
Turning Git commits into changelog
with git-cliff

Orhun Parmaksız



whoami

● Open Source Developer (@orhun on GitHub)
○ Maintainer @ Ratatui.rs
○ Creator @ {git-cliff,kmon,gpg-tui,systeroid,daktilo,...}

● Package Maintainer @ Arch Linux / Alpine Linux

● Paid Open Source Contributor @ Shuttle.rs





schedule()

● Problem description
● Possible solutions
● The story of git-cliff
● Demo implementation 🦀



Imagine a developer



Imagine a developer
● uses git



Imagine a developer
● uses git

○ uses conventional commits



Imagine a developer

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

● uses git
○ uses conventional commits



Imagine a developer

feat(life)!: set the computer on fire

● uses git
○ uses conventional commits



Imagine a developer

https://www.conventionalcommits.org/en/v1.0.0/

● uses git
○ uses conventional commits



Imagine a developer
● uses git

○ uses conventional commits
● uses semantic versioning



Imagine a developer

MAJOR.MINOR.PATCH

● uses git
○ uses conventional commits

● uses semantic versioning



Imagine a developer

https://semver.org/

● uses git
○ uses conventional commits

● uses semantic versioning



Imagine a developer
● uses git

○ uses conventional commits
● uses semantic versioning
● likes automation



Imagine a developer
● uses git

○ uses conventional commits
● uses semantic versioning
● likes automation
● wants to create a release



Changelog? 🤔



A changelog is a log or record of all notable changes made to a project. The 
project is often a website or software project, and the changelog usually includes 
records of changes such as bug fixes, new features, etc. Some open-source 
projects include a changelog as one of the top-level files in their distribution.

https://en.wikipedia.org/wiki/Changelog







Automation 🤠





git shortlog



Other tools

● https://github.com/saschagrunert/git-journal
● https://github.com/clog-tool/clog-cli
● https://crates.io/crates/relnotes
● https://github.com/oknozor/cocogitto
● https://github.com/rustic-games/jilu
● https://github.com/github-changelog-generator/github-changelog-generator

https://github.com/saschagrunert/git-journal
https://github.com/clog-tool/clog-cli
https://crates.io/crates/relnotes
https://github.com/oknozor/cocogitto
https://github.com/rustic-games/jilu
https://github.com/github-changelog-generator/github-changelog-generator


The problem

Creating a changelog is a tedious task.

It can be easily automated with the help of
conventional commits and semantic versioning.











(not always)



git-cliff



Imagine a developer



Imagine a developer
● writes Rust 🦀



Imagine a developer
● writes Rust 🦀
● created a cool project 
😎



Imagine a developer
● writes Rust 🦀
● created a cool project 😎
● wants to create a changelog 🤔



This was me.



https://github.com/orhun/gpg-tui





jilu
● generates a changelog based on the state of your Git repository.
● convert conventional commits into a human readable changelog
● use Git tags to annotate your releases with release titles and richly formatted release notes

● customize your changelog template to best serve your community
● integrate the jilu binary into your CI workflow for automated updates

记录

https://github.com/rustic-games/jilu





TEMPLATE.md









What do we need to do?

1. Open Git repository (read contents)
2. Parse commits
3. Generate changelog
4. Profit





Step 1



Reading Git contents
1 2

3



git2



git2
● requires libgit2 >=1.7.1



git2
● requires libgit2 >=1.7.1
● vendored-libgit2 to always compile and statically link to a copy of libgit2



git2
● requires libgit2 >=1.7.1
● vendored-libgit2 to always compile and statically link to a copy of libgit2
● LIBGIT2_NO_VENDOR=1



Cargo.toml





Step 2







● amend
● as_object
● author
● author_with_mailmap
● body
● body_bytes
● committer
● committer_with_mailmap
● header_field_bytes
● id
● into_object
● message
● message_bytes
● message_encoding
● message_raw
● message_raw_bytes
● parent
● parent_count
● parent_id
● parent_ids
● parents
● raw
● raw_header
● raw_header_bytes
● summary
● summary_bytes
● time
● tree
● tree_id



Step 3









https://gist.github.com/orhun/e9992ebb1d7658b0cec1cbeab33a2bc2



git-cliffsmo
l!





● Argument parsing -> clap
● Configuration -> TOML
● Git handling -> git2
● Templating -> Tera (Jinja2/Django)







Tera

https://keats.github.io/tera/





















Integration ⚙





cliff.toml





















As a library 🦀



release-plz
Release Rust crates from CI with a Release PR 🤖 by @MarcoIeni

https://github.com/MarcoIeni/release-plz







Automated Rust Releases

https://blog.orhun.dev/automated-rust-releases/



Future 🚀









https://github.com/sponsors/orhun



https://github.com/sponsors/orhun



Thank you!

orhun.dev
git-cliff.org


