
1

Philippe Charrière
Customer Success Engineer @ GitLab + Golang 🐣dev.

Give super
powers to
your Golang
applications
with WebAssembly and Extism+Wazero

2

Give super powers to your Golang
applications ● WASM?

● WASI?
○ Demo

● Limitations
● Wazero

○ Demo
● Extism

○ Demo

👋 Some parts of this talk have already
been discussed this morning by
Francesco Romani

Agenda

3

WebAssembly?

4

Give super powers to your Golang
applications

WebAssembly
(or Wasm)?

https://webassembly.org

● Code > Bytecode (wasm binary file)
● Binary format for executing code on

the Web
● The JavaScript VM is responsible for

the execution of the WASM code
● WASM is polyglot
● WASM is safe

WASM is the nickname for WebAssembly

5

Give super powers to your Golang
applications

Why WASM?

● A complement to JavaScript
● Near-native speeds
● Complex applications in the browser

WASM is the nickname for WebAssembly

6

WebAssembly in
the browser is
amazing

7

Give super powers to your Golang
applications

WebAssembly
in the browser
is amazing.

Google Earth

https://earth.google.com

https://earth.google.com

8

Give super powers to your Golang
applications

WebAssembly
in the browser
is amazing.

Stackblitz

https://stackblitz.com/edit/node-sea49e?file=index.js

https://stackblitz.com/edit/node-sea49e?file=index.js

9

Give super powers to your Golang
applications

The primary
qualities of
WASM

● Speed
● Efficiency
● Safe
● Versatile
● Portable

10

Give super powers to your Golang
applications

Free WASM
from the
browser

Let it Go!

11

WASI?
WebAssembly System Interface

12

Give super powers to your Golang
applications

WASI?

https://wasi.dev

● WebAssembly System Interface
● Interface between

○ WebAssembly (WASM) code
○ And a Runtime environment

● Allowing WASM code to be run in
various contexts

13

Give super powers to your Golang
applications

Some WASI Use
Cases

● CLI applications
● Applications with plug-ins (Zellij,

Lapce)
● Database UDF (ScyllaDB,

PostgreSQL)
● WebHooks, Filters, … (Webhook

Relay, Envoy)
● FaaS (Fermyon cloud, WasmCloud,

Shopify, …)
● …

14

Give super powers to your Golang
applications

At least, 3 ways
to run Wasm
programs
outside the
browser

● WASI Runtimes CLI
● WASI Runtimes SDK
● Ready to use applications with

embedded Wasm runtime
○ Spin from Fermyon
○ Wasm Workers Server from Wasm Lab
○ …

15

Give super powers to your Golang
applications

WASI Runtimes
● WasmEdge,
● Wasmtime,
● Wasmer,
● Wazero 🩵,
● NodeJS,
● …

16

Demo
01-first-wasm-program

✋ I use code snippets because I have no memory
🥰 I use TinyGo to build the wasi programs

17

Some limitations

18

Give super powers to your Golang
applications

One of the
“annoying”
limitations

● Only numbers 😮
● How to pass string arguments to a

Wasm function?
● How to return a string as the result

of a Wasm function call?

Solution:
Exchange data with the
Shared Memory Buffer

19

Copy the string to the memory (position & size),
Then, call Hello(pos, size)

Wasm module Host Application
Hello(pos,size int32) int32
{

}

size := “Jane”.length
pos := allocate(size)
res := Hello(pos,size)

Shared Memory

“Jane” copy

1

pos,size

✋pseudo code

20

Hello can read the string into the memory with pos &
size

Wasm module Host Application
Hello(pos,size int32) int32
{
 name := readMem(pos,size)

}

size := “Jane”.length
pos := allocate(size)
res := Hello(pos,size)

Shared Memory

“Jane” copy

1

pos,size
read

2

21

Hello can copy a string into the memory and return
the pos & size

Wasm module Host Application
Hello(pos,size int32) int32
{
 name := readMem(pos,size)
 msg := “hello “ + name
 pos,size := copyToMem(msg)

 return offset(pos,size)
}

size := “Jane”.length
pos := allocate(size)
res := Hello(pos,size)

Shared Memory

“Jane” copy

1

pos,size
read

2

“hello Jane“

copy

3

pos,size

shift left OR operation

22

Then the Host Application can read the pos & size and
decode the buffer memory

Wasm module Host Application
Hello(pos,size int32) int32
{
 name := readMem(pos,size)
 msg := “hello “ + name
 pos,size := copyToMem(msg)

 return offset(pos,size)
}

size := “Jane”.length
pos := allocate(size)
res := Hello(pos,size)
p,s := getPosSizeFrom(res)
msg = decodeBuffer(p,s)

Shared Memory

“Jane” copy

1

pos,size
read

2

“hello Jane“

copy

3

pos,size
read 4

p = shift right operation
s = AND mask operation

println(msg)

23

Give super powers to your Golang
applications

Wazero
● You can develop your own CLI
● But, you need to handle the limitations
● Develop all the “plumbing”

Solution: Wazero Runtime 🩵 & SDK
https://wazero.io

24

Demo
02-wazero
Write your 1st CLI 🚀

25

Give super powers to your Golang
applications

But,
sometimes, you
need more

● Make HTTP requests
● Make Redis requests from the Wasm

module
● Use MQTT or NATS
● …

Solution: Host Functions

26

Give super powers to your Golang
applications

Host Function?

● A function defined in the Host
application

● For The Wasm program, it’s used as
an import function

27

Your Golang application + Host functions

Your Golang application
(specific use cases)

HTTP requests, Redis cache, …

Application source code

Wasm RT SDK

Wasm runtime

Host functions

Wasm program
(plugin)

[Load + Execute]

HTTP requests
Redis client
…

helpers
Read Memory
Copy to Memory
Bits manipulation
 …

28

Give super powers to your Golang
applications

“Helpers”, but…

● ✋You need to write your own glue
● For every language you want to

support on the Wasm side 󰷺

29

🤬 It’s complicated! But…

30

Give super powers to your Golang
applications

There is
another way
(easier) 👀

The cross-language framework for
building with WebAssembly

Extism is a plug-in system for everyone.

31

Extism SDKs + PDKs

Browser / JS
C

C++
.NET

Elixir / Erlang
Go

Haskell
Java
Node

OCaml
PHP

Python
Ruby
Rust

Zig

Rust
JavaScript
Go
Haskell
AssemblyScript
C
Zig

32

Extism SDKs
https://extism.org/docs/category/integrate-into-your-codebase

33

Extism SDKs

Extism SDKs
Create host applications

Wasmtime RT

34

Extism SDKs

Extism SDKs
Create host applications

🦀 LibExtism

Wasmtime RT

https://github.com/extism/extism/blob/main/runtime/extism.h

35

Extism SDKs

Extism SDKs
Create host applications

Language Wrapper

🦀 LibExtism

Wasmtime RT

Browser / JS
C
C++
.NET
Elixir / Erlang
Go
Haskell
Java
Node
OCaml
PHP
Python
Ruby
Rust
Zig

36

Extism SDKs + Ready to use Host Function

Extism SDKs
Create host applications

Language Wrapper

🦀 LibExtism

Wasmtime RT
Ready to use

Host functions

Develop your
Host functions

Wasm program
(plugin)

[Load + Execute]

Extism PDKs
HTTP, files, …

37

Extism SDKs + Ready to use Host Function

Extism SDKs
Create host applications

Language Wrapper

🦀 LibExtism

Wasmtime RT
Ready to use

Host functions

Develop your
Host functions

Wasm program
(plugin)

[Load + Execute]

Extism PDKs
HTTP, files, …

⚠ shared library
libextism.so (on Linux)
extism.dll (on Windows)

libextism.dylib (on macos)

38

Go-SDK:
Extism 💖 Wazero
https://github.com/extism/go-sdk

39

Extism Go-SDK

Extism SDKs
Create host applications

GoLang Wrapper
Zero dependency

Ready to use
Host functions

Develop your
Host functions

Wasm program
(plugin)

[Load + Execute]

Extism PDKs

40

How it works?

41

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(){

}

input := "Bob"

_, res, err := plugin.Call(

 "hello",

 []byte(input),

)

fmt.Println(string(res))

Shared
Memory

"Bob"

Extism *-SDK + Extism *-PDK

42

Extism *-SDK + Extism *-PDK

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(){

 input := pdk.Input()

}

input := "Bob"

_, res, err := plugin.Call(

 "hello",

 []byte(input),

)

fmt.Println(string(res))

Shared
Memory

"Bob"

43

Extism *-SDK + Extism *-PDK

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(){

 input := pdk.Input()

 output := "👋 hello " + string(input)

 mem := pdk.AllocateString(output)

 pdk.OutputMemory(mem)

}

input := "Bob"

_, res, err := plugin.Call(

 "hello",

 []byte(input),

)

fmt.Println(string(res))

Shared
Memory

"Bob"

"👋

hello

Bob"

44

Demo time!
Let’s write some Extism Wasm plugins (with the PDKs)

03-go-plugin + Extism CLI

Examples:
04-rust-plugin
05-js-plugin

45

Create a Host Application
Write a CLI with the Extism Go-SDK

46

With Extism Golang-SDK 🥰

47

Demo time!
Let’s write a Host Application (with the Go SDK)

06-go-host-application

and a last example: 07-http-server

48

Give super powers to your Golang
applications

Extism & Host
Functions

https://extism.org/docs/integrate-into-your-codebase/go-host-sdk#host-functions

49

SDKs & PDKs are evolving
(and probably new ones to come)
With Go & Extism + Wazero the possibilities are numerous

50

https://github.com/bots-garden/minism

Accelerate your
CI with WASM
plugins
Minism CLI 6.5MB (zero dependency)
🐳 image: botsgarden/minism 7.03MB
Wasm plugin few KB

51

Running Extism Plugins in PostgreSQL

by: Muhammad Azeez

Bringing
WebAssembly
to PostgreSQL
using Extism
https://dylibso.com/blog/pg-extism/

52

Philippe Charrière
✉ ph.charriere@gmail.com
🆇 @k33g_org
🩵 @k33gorg.bsky.social
📝 https://k33g.hashnode.dev

53

Source code
https://github.com/bots-garden/golab-2023

🍊
https://gitpod.io/#https://github.com/bots-garden/g
olab-2023

🐳
https://open.docker.com/dashboard/dev-envs?url=h
ttps://github.com/bots-garden/golab-2023/tree/main

54

Some blog posts to help
📝 WASI and Node.js:
https://k33g.hashnode.dev/series/wasi-nodejs
📝 Wazero, first steps
https://k33g.hashnode.dev/series/wazero-first-steps
📝 Discovery of Extism
https://k33g.hashnode.dev/series/extism-discovery

55

Thank you for
your attention

Q&A

Use Extism & Wazero, this is the way

56

Extism SDKs

Extism SDKs
Create host applications

Language Wrapper

🦀 LibExtism

Wasmtime
Ready to use

Host functions

Develop your
Host functions

Wasm program
(plugin)

[Load + Execute]

Extism PDKs
HTTP, files, …

57

Extism & Host Functions
https://extism.org/docs/integrate-into-your-codebase/go-host-sdk#host-functions

58

Extism *-SDK: create a host function

Extism SDKs Host applications

robotMessage := func(ctx Context, plugin *CurrentPlugin, stack []uint64)

{

 offset := stack[0]

 buffer, _ := plugin.ReadBytes(offset)

 message := string(buffer)

 fmt.Println("🤖:>", message)

 stack[0] = 0

}

extism.NewHostFunctionWithStack("hostRobotMessage","env", robotMessage,

[]api.ValueType{api.ValueTypeI64},api.ValueTypeI64)

59

Extism *-SDK: create a host function

Extism SDKs Host applications Wasm Plugin

//export hostRobotMessage

func hostRobotMessage(offset uint64) uint64

func RobotMessage(message string) {

 mem := pdk.AllocateString(message)

 hostRobotMessage(mem.Offset())

}

func say_hello() {

 RobotMessage("hello " + string(input))

}

robotMessage := func(...) {

 offset := stack[0]

 buffer, _ := plugin.ReadBytes(offset)

 message := string(buffer)

 fmt.Println("🤖:>", message)

 stack[0] = 0

}

[trigger]

60

Extism *-SDK + Extism *-PDK

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(name string) string {

 return "👋 hello " + name

}

input := "Bob"

_, res, err := plugin.Call(

 "hello",

 []byte(input),

)

fmt.Println(string(res))

61

Extism *-SDK + Extism *-PDK

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(name string) string {

}

input := "Bob"

_, res, err := plugin.Call(

 "hello",

 []byte(input),

)

fmt.Println(string(res))

62

Your Golang application

Your Golang application
(specific use cases)

HTTP requests, Redis cache, …

Application source code

Wasm RT SDK

Wasm runtime
Host functions

Wasm program
(plugin)

[Load + Execute]

HTTP requests
Redis client
…

helpers

63✋pseudo code

[import]

[call]

[return]

HTTP GET Request

