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Give super 
powers to 
your Golang 
applications
with WebAssembly and Extism+Wazero
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Give super powers to your Golang 
applications ● WASM?

● WASI? 
○ Demo

● Limitations
● Wazero

○ Demo
● Extism

○ Demo

👋 Some parts of this talk have already 
been discussed this morning by 
Francesco Romani

Agenda
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WebAssembly?
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Give super powers to your Golang 
applications

WebAssembly 
(or Wasm)?

https://webassembly.org

● Code > Bytecode (wasm binary file)
● Binary format for executing code on 

the Web
● The JavaScript VM is responsible for 

the execution of the WASM code
● WASM is polyglot
● WASM is safe

WASM is the nickname for WebAssembly
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Give super powers to your Golang 
applications

Why WASM?

● A complement to JavaScript
● Near-native speeds
● Complex applications in the browser

WASM is the nickname for WebAssembly
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WebAssembly in 
the browser is 
amazing
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Give super powers to your Golang 
applications

WebAssembly 
in the browser 
is amazing.

Google Earth

https://earth.google.com 

https://earth.google.com
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Give super powers to your Golang 
applications

WebAssembly 
in the browser 
is amazing.

Stackblitz

https://stackblitz.com/edit/node-sea49e?file=index.js 

https://stackblitz.com/edit/node-sea49e?file=index.js
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Give super powers to your Golang 
applications

The primary 
qualities of 
WASM

● Speed 
● Efficiency 
● Safe
● Versatile 
● Portable
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Give super powers to your Golang 
applications

Free WASM 
from the 
browser

Let it Go!
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WASI?
WebAssembly System Interface
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Give super powers to your Golang 
applications

WASI?

https://wasi.dev

● WebAssembly System Interface
● Interface between 

○ WebAssembly (WASM) code 
○ And a Runtime environment

● Allowing WASM code to be run in 
various contexts
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Give super powers to your Golang 
applications

Some WASI Use 
Cases

● CLI applications
● Applications with plug-ins (Zellij, 

Lapce)
● Database UDF (ScyllaDB, 

PostgreSQL)
● WebHooks, Filters, … (Webhook 

Relay, Envoy)
● FaaS (Fermyon cloud, WasmCloud, 

Shopify, …)
● …
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Give super powers to your Golang 
applications

At least, 3 ways 
to run Wasm 
programs
outside the 
browser

● WASI Runtimes CLI
● WASI Runtimes SDK
● Ready to use applications with 

embedded Wasm runtime
○ Spin from Fermyon
○ Wasm Workers Server from Wasm Lab
○ …
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Give super powers to your Golang 
applications

WASI Runtimes
● WasmEdge, 
● Wasmtime, 
● Wasmer, 
● Wazero 🩵, 
● NodeJS, 
● … 
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Demo
01-first-wasm-program

✋ I use code snippets because I have no memory
🥰 I use TinyGo to build the wasi programs
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Some limitations
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Give super powers to your Golang 
applications

One of the 
“annoying” 
limitations

● Only numbers 😮
● How to pass string arguments to a 

Wasm function?
● How to return a string as the result 

of a Wasm function call?

Solution: 
Exchange data with the 
Shared Memory Buffer
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Copy the string to the memory (position & size), 
Then, call Hello(pos, size)

Wasm module Host Application
Hello(pos,size int32) int32
{
  

}

size := “Jane”.length
pos := allocate(size)
res := Hello(pos,size)

Shared Memory

“Jane” copy

1

pos,size

✋pseudo code
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Hello can read the string into the memory with pos & 
size

Wasm module Host Application
Hello(pos,size int32) int32
{
  name := readMem(pos,size)

}

size := “Jane”.length
pos := allocate(size)
res := Hello(pos,size)

Shared Memory

“Jane” copy

1

pos,size
read

2
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Hello can copy a string into the memory and return 
the pos & size

Wasm module Host Application
Hello(pos,size int32) int32
{
  name := readMem(pos,size)
  msg := “hello “ + name
  pos,size := copyToMem(msg)
  
  return offset(pos,size)
}

size := “Jane”.length
pos := allocate(size)
res := Hello(pos,size)

Shared Memory

“Jane” copy

1

pos,size
read

2

“hello Jane“

copy

3

pos,size

shift left OR operation
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Then the Host Application can read the pos & size and 
decode the buffer memory

Wasm module Host Application
Hello(pos,size int32) int32
{
  name := readMem(pos,size)
  msg := “hello “ + name
  pos,size := copyToMem(msg)
  
  return offset(pos,size)
}

size := “Jane”.length
pos := allocate(size)
res := Hello(pos,size)
p,s := getPosSizeFrom(res)
msg = decodeBuffer(p,s)

Shared Memory

“Jane” copy

1

pos,size
read

2

“hello Jane“

copy

3

pos,size
read 4

p = shift right operation
s = AND mask operation

println(msg)
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Give super powers to your Golang 
applications

Wazero
● You can develop your own CLI
● But, you need to handle the limitations
● Develop all the “plumbing”

Solution: Wazero Runtime 🩵 & SDK
https://wazero.io
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Demo
02-wazero
Write your 1st CLI 🚀
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Give super powers to your Golang 
applications

But, 
sometimes, you 
need more

● Make HTTP requests
● Make Redis requests from the Wasm 

module
● Use MQTT or NATS
● …

Solution: Host Functions
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Give super powers to your Golang 
applications

Host Function?

● A function defined in the Host 
application

● For The Wasm program, it’s used as 
an import function
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Your Golang application + Host functions

Your Golang application
(specific use cases)

HTTP requests, Redis cache, …

Application source code

Wasm RT SDK

Wasm runtime

Host functions

Wasm program 
(plugin)

[ Load + Execute]

HTTP requests
Redis client
…

helpers
Read Memory
Copy to Memory
Bits manipulation
 …
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Give super powers to your Golang 
applications

“Helpers”, but…

● ✋You need to write your own glue
● For every language you want to 

support on the Wasm side 󰷺
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🤬 It’s complicated! But…
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Give super powers to your Golang 
applications

There is 
another way 
(easier) 👀

The cross-language framework for 
building with WebAssembly

Extism is a plug-in system for everyone.
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Extism SDKs + PDKs

Browser / JS
C

C++
.NET

Elixir / Erlang
Go

Haskell
Java
Node

OCaml
PHP

Python
Ruby
Rust

Zig

Rust
JavaScript
Go
Haskell
AssemblyScript
C
Zig
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Extism SDKs
https://extism.org/docs/category/integrate-into-your-codebase
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Extism SDKs

Extism SDKs
Create host applications

Wasmtime RT
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Extism SDKs

Extism SDKs
Create host applications

🦀 LibExtism

Wasmtime RT

https://github.com/extism/extism/blob/main/runtime/extism.h
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Extism SDKs

Extism SDKs
Create host applications

Language Wrapper

🦀 LibExtism

Wasmtime RT

Browser / JS
C
C++
.NET
Elixir / Erlang
Go
Haskell
Java
Node
OCaml
PHP
Python
Ruby
Rust
Zig
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Extism SDKs + Ready to use Host Function

Extism SDKs
Create host applications

Language Wrapper

🦀 LibExtism

Wasmtime RT
Ready to use 

Host functions

Develop your 
Host functions

Wasm program 
(plugin)

[ Load + Execute]

Extism PDKs
HTTP, files, …
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Extism SDKs + Ready to use Host Function

Extism SDKs
Create host applications

Language Wrapper

🦀 LibExtism

Wasmtime RT
Ready to use 

Host functions

Develop your 
Host functions

Wasm program 
(plugin)

[ Load + Execute]

Extism PDKs
HTTP, files, …

⚠ shared library
libextism.so (on Linux)
extism.dll (on Windows) 

libextism.dylib (on macos)
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Go-SDK: 
Extism 💖 Wazero
https://github.com/extism/go-sdk
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Extism Go-SDK

Extism SDKs
Create host applications

GoLang Wrapper
Zero dependency

Ready to use 
Host functions

Develop your 
Host functions

Wasm program 
(plugin)

[ Load + Execute]

Extism PDKs
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How it works?
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Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(){

  

}

input := "Bob"

_, res, err := plugin.Call(

  "hello",

  []byte(input),

)

fmt.Println(string(res))

Shared 
Memory

"Bob"

Extism *-SDK + Extism *-PDK



42

Extism *-SDK + Extism *-PDK

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(){

  input := pdk.Input()

}

input := "Bob"

_, res, err := plugin.Call(

  "hello",

  []byte(input),

)

fmt.Println(string(res))

Shared 
Memory

"Bob"
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Extism *-SDK + Extism *-PDK

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(){

  input := pdk.Input()

  output := "👋 hello " + string(input)

  

  mem := pdk.AllocateString(output)

  pdk.OutputMemory(mem)

}

input := "Bob"

_, res, err := plugin.Call(

  "hello",

  []byte(input),

)

fmt.Println(string(res))

Shared 
Memory

"Bob"

"👋 

hello 

Bob"
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Demo time!
Let’s write some Extism Wasm plugins (with the PDKs)

03-go-plugin + Extism CLI

Examples:
04-rust-plugin
05-js-plugin
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Create a Host Application
Write a CLI with the Extism Go-SDK
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With Extism Golang-SDK 🥰
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Demo time!
Let’s write a Host Application (with the Go SDK)

06-go-host-application

and a last example: 07-http-server
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Give super powers to your Golang 
applications

Extism & Host 
Functions

https://extism.org/docs/integrate-into-your-codebase/go-host-sdk#host-functions
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SDKs & PDKs are evolving 
(and probably new ones to come)
With Go & Extism + Wazero the possibilities are numerous
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https://github.com/bots-garden/minism

Accelerate your 
CI with WASM 
plugins
Minism CLI 6.5MB (zero dependency)
🐳 image: botsgarden/minism 7.03MB
Wasm plugin few KB
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Running Extism Plugins in PostgreSQL

by: Muhammad Azeez

Bringing 
WebAssembly 
to PostgreSQL 
using Extism
https://dylibso.com/blog/pg-extism/
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Philippe Charrière
✉ ph.charriere@gmail.com
🆇 @k33g_org
🩵 @k33gorg.bsky.social
📝 https://k33g.hashnode.dev
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Source code
https://github.com/bots-garden/golab-2023

🍊 
https://gitpod.io/#https://github.com/bots-garden/g
olab-2023

🐳 
https://open.docker.com/dashboard/dev-envs?url=h
ttps://github.com/bots-garden/golab-2023/tree/main
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Some blog posts to help
📝 WASI and Node.js: 
https://k33g.hashnode.dev/series/wasi-nodejs
📝 Wazero, first steps
https://k33g.hashnode.dev/series/wazero-first-steps 
📝 Discovery of Extism 
https://k33g.hashnode.dev/series/extism-discovery
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Thank you for 
your attention

Q&A

Use Extism & Wazero, this is the way 
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Extism SDKs

Extism SDKs
Create host applications

Language Wrapper

🦀 LibExtism

Wasmtime
Ready to use 

Host functions

Develop your 
Host functions

Wasm program 
(plugin)

[ Load + Execute]

Extism PDKs
HTTP, files, …
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Extism & Host Functions
https://extism.org/docs/integrate-into-your-codebase/go-host-sdk#host-functions
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Extism *-SDK: create a host function

Extism SDKs Host applications

robotMessage := func(ctx Context, plugin *CurrentPlugin, stack []uint64) 

{

  offset := stack[0]

  buffer, _ := plugin.ReadBytes(offset)

  message := string(buffer)

  fmt.Println("🤖:>", message)

  stack[0] = 0

}

extism.NewHostFunctionWithStack("hostRobotMessage","env", robotMessage,

[]api.ValueType{api.ValueTypeI64},api.ValueTypeI64)
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Extism *-SDK: create a host function

Extism SDKs Host applications Wasm Plugin

//export hostRobotMessage

func hostRobotMessage(offset uint64) uint64

func RobotMessage(message string) {

  mem := pdk.AllocateString(message)

  hostRobotMessage(mem.Offset())

}

func say_hello() {

  RobotMessage("hello " + string(input))

}

robotMessage := func(...) {

  offset := stack[0]

  buffer, _ := plugin.ReadBytes(offset)

  message := string(buffer)

  fmt.Println("🤖:>", message)

  stack[0] = 0

}

[ trigger ]
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Extism *-SDK + Extism *-PDK

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(name string) string {

  return "👋 hello " + name

}

input := "Bob"

_, res, err := plugin.Call(

  "hello",

  []byte(input),

)

fmt.Println(string(res))
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Extism *-SDK + Extism *-PDK

Extism SDKs
Host applications

Wasm program (plugin)

//export hello

func hello(name string) string {

}

input := "Bob"

_, res, err := plugin.Call(

  "hello",

  []byte(input),

)

fmt.Println(string(res))
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Your Golang application

Your Golang application
(specific use cases)

HTTP requests, Redis cache, …

Application source code

Wasm RT SDK

Wasm runtime
Host functions

Wasm program 
(plugin)

[ Load + Execute]

HTTP requests
Redis client
…

helpers



63✋pseudo code

[import]

[call]

[return]

HTTP GET Request


