
1

Roberto Clapis (They/Them)
Funemployed

Safe by
Construction

2

A word of warning

If you don't use a memory safe language or if your
language/toolchain of choice has no way to expose,
simulate or enforce types, you're not gonna get much
value from this talk.

Please use types and a memory-safe language before
applying anything that follows.

3

Why am I giving this talk?

● 3 years as a security consultant
○ Consulted for tens of companies with different needs
○ 9 months consulting for big projects at scale (e.g. Azure,

GE…)
● 5 years at Google

○ Specializing in web security
○ Almost only defensive work
○ Got a chance to contribute to the web specification

4

What is this talk about?

A big chunk of security is
solved.

By the end of this talk you'll
know how to replicate this

result.

5

Problem
Definition

6

Problem definition

There are many security issues in the wild, today we'll tackle
injection-related ones, some notable examples are:
● XSS
● Command injection
● SQL injections

These affect memory safe languages like Rust or Go, and are
common problems in all contexts where there is an untrusted
party and an authoritative one.

7

A program

Any program can be
abstracted as a function from
inputs to outputs, and inputs

should not become part of the
function itself.

8

Injections

Code injections
● They happen when data accidentally

gets executed as code.
● This affects more or less all code that

runs on a server of any sort, plus
some client-side code too.

● This is specifically dangerous when
more than one language or context of
execution is at play, e.g:
○ SQL called by Go
○ HTML rendered by a node

backend
○ A shell command ran by Rust

9

Command injections should
clearly never happen

So… just be careful, right?

Be careful approach
Injections

10

2007

11

Examples
Injections

This is bad if:
● The user inputting the

highlighted string
doesn't own the
machine running this
code

● The machine running
this code contains any
valuable information or
has any value for its
owner

● …

let mut cmd_exec =
Command::new("sh");

cmd_exec.arg("-c")
.arg(USER_INPUT);

cmd := exec.Command("sh",
"-c",
USER_INPUT)

12

A slightly more complex
example

Injections

But this encapsulates the
entire issue.

The SQL engine in the first
example knows how to
handle the string.

db.QueryRow("SELECT id from
db where name = ?", name)

db.QueryRow("SELECT id from
db where name =
'"+name+"'")

db.QueryRow("SELECT id from
db where " + stringVar)

13

A complex example
Injections

How many contexts are
there here?

<img
onclick="alert('clicked')"

style="outline: 1px solid
red"

src="data:image/svg+xml;
utf8,<svg>...</svg>"

>

14

A more complex example
Injections

How many contexts are
there here?

Way too many.

<img
onclick="alert('clicked')"

style="outline: 1px solid
red"

src="data:image/svg+xml;
utf8,<svg>...</svg>"

>

15

The solutions is to make sure no untrusted strings ever become
part of a page without being properly escaped (e.g. using <
instead of < when the context is HTML)

Manually escaped.

For the correct context.

EXACTLY ONCE.

(Who hasn't seen some "?)

But… how careful are we talking?
Injections

16

The standard approach requires all programmers:
● to be security-savvy
● to never make mistakes
● to fully understand the dataflow of the entire software

infrastructure, any time they write code, even code they don't
own.

This is a nice fantasy novel. We know what happened with manual
memory management, there's a reason Go and Rust exist.

I would not trust myself to be able to consistently do this.

We cannot possibly be that careful
Injections

17

… well, sometimes we need users to provide markup for their
text, for example in mail clients that run in web browsers,
emails use HTML for style…

So we have to let some code execute.

So escape only dangerous markup… but not all of it?

There's even more
Injections

18

An absolute
mess.

So, what can
we do?

Definition

19

Solution
Definition

20

Good ideas that don't work

● Tainting
● Linters
● Awareness courses
● Hope
● Penetration tests
● Prayers

21

What can we trust?

Code that has been written by the programmer.

We do not consider insider threats for this talk,
we try to prevent unintentional vulnerabilities.

22

Safe strings

There are strings that are
as trustworthy as source
code: compile-time
constants.

Not all strings
are born equal

● We should treat all other strings as
unsafe

● We should have a way to have
runtime-behavior for compile-time
constants

● Later on, we should figure out how to
"promote" an unsafe string to a safe
one, or keep it unsafe and use it
safely.

23

Safe strings

The simplest approach, but already takes
care of some important cases.

Just allow
constants: Rust

macro_rules! const_fn {
 ($a:literal) => {
 dynamic_fn($a)
 }
}

const_fn!("hello", 12)
const_fn!(s, x)

24

Safe strings

The simplest approach, but already takes
care of some important cases.

Just allow
constants: Go

package safe

type constantStr string
func ConstFn(s constantStr)

ConstFn("foo")
ConstFn(stringVar)

25

Safe strings

The simplest approach, but already takes
care of some important cases.

Just allow
constants: TS

function trusted(tpl:
TemplateStringsArray)...{

trusted`something`;
trusted("something");

26

Safe strings

function trusted(tpl:
TemplateStringsArray)...{

if(!Array.isArray(tpl.raw)||
 !Object.isFrozen(tpl) ||
 !Object.isFrozen(tpl.raw)) {
throw new Error("plz stahp");

Just allow
constants: TS
with JS interop

We can check some things at runtime when
needed.

27

We can create safe runtime strings that can only be
constructed with compile-time constants.

This trick allows us to define functions that can only be called
safely. Their args are as trusty as code.

With this, we may decide to allow programmers to concatenate
safe strings with other constants or with safe strings, and
accept that the result is still safe.

The one gadget we need
Safe strings

28

type stringConstant string

type TrustedSQLString struct {
s string

}

func New(text stringConstant)
TrustedSQLString {

return TrustedSQLString{
 string(text)

 }
}

db.QueryRow(Trusted, any)

A practical example
Safe strings

google/go-safeweb/safesql

A safe version of the
standard sql package in 60
lines of code.

29

Unsafe strings

How to deal
with untrusted
strings

● Most programs take user input and
need to do something with it.

● Such input needs to flow through
the program and be rendered/used.

30

Are just strings
Unsafe strings

Any function that accepts just strings should be written to
assume untrustworthy content.

● SQL engines usually have prepared statements that can be
used to pass strings as just strings.

● HTML renderers… don't. At least not fully. Not in all
languages.

(A safe HTML template for Rust would be a nice project, please
contact me if you are interested, I have proposals)

31

Escaping requires to know the right context.

Escaping must be done as late as possible.

And this is painful.

The problem with escaping
Unsafe strings

32

Writing an escaper
Unsafe strings

jsMaliciousFunc("malicious")

Will be escaped as:

jsMaliciousFunc("malicious&q
uot;)

Which the browser will decode and
execute.

If the escaper just treats this
as HTML, JS is still going to
run.

We need context-aware
automatic escaping
templates.

33

● Expensive to write
● Hard to write
● Requires maintenance
● It's the only way to be safe

We should have one trusted templating engine per
language/script combination (e.g. Go safehtml and safeSQL,
Rust safehtml and safeSQL…)

Contextual autoescaping
Unsafe strings

34

Short recap

● Use a way to mark all compile-time data as safe.
● Only use safe data as part of code (e.g. to compose SQL

queries, to render HTML, to run commands…)
● If you need to use unsafe strings, escape them as late as

possible, preferably within the engine (SQL prepared
statements, use HTML .innerText on the client side) or with
context-aware templates.

35

The End?

I've watched and seen a lot of talks and documentation on the
topic end on this note.

But this is not enough.

36

Solution
usage

37

Sounds hard

This sounds like it's
gonna be hard to
adopt

38

But it isn't

Actually, super
easy, barely an
inconvenience.

39

Adoption

How to use it

Adoption is simpler
than it sounds.
Really.
Pinky promise.

● For new code, just use the wrappers
that force safe code, and ban the
other packages.

● For old code:
○ Promote existing uses as safe
○ Force new code to be safe
○ Refactor old code to be safe

● This is not a Big Tech Energy
approach

40

New code

The hardest part is to ban use of dangerous packages
● CI/CD could block new code that doesn't, there are many

tools for that (we even wrote one just for this)
● Said tools can even run locally
● Just make sure that they clearly tell the users how to switch

to the safe versions

https://github.com/google/go-safeweb/tree/master/cmd/bancheck

41

Old code

Step 1
● Promote it as safe
● Ban all new uses of unsafe

code

This should be done as
atomically as possible.

42

Old code

Step 2
● Fix old code
● Take all the time you need
● Or don't, I'm not a cop

While you do, keep in mind that
usually the harder the refactor is,
the more likely it is to remove vulns.

43

To do so, we use different conversions

● Legacy conversions to promote all old code to the new API
func LegacyRiskyAssumeHTML(s string) safehtml.HTML {

return html(s)
}
● Testconversions for tests (use test-only packages)
● Unchecked conversions for stuff that actually needs them (e.g. a

local SQL interpreter). They will all still require security reviews.
● Sanitizers, if you need, to create safe markup subsets.
● Raw strings will be handled by the engine/template.

Take a look at github.com/google/safehtml to see this in action.

http://github.com/google/safehtml/tree/main

44

Safe and intended uses require no review

No special interaction or care is required
for normal application code.

Sanitizers and safe constructors return
objects that are easy to use.

45

Final Notes

46

In case of
failure there are
additional
safety nets.

● CSP
● Sandboxes
● Fine grained privileges

The fact that you have compile time
guarantees doesn't mean you should
stop using other defense mechanisms.

47

Adoption

Don't forget UX
● Ux must be part of security
● Frustrating the user can ruin your

entire work.
● Errors must be telling.

48

Adoption

Benefits ● Early adoptions guarantee safety
● Partial adoptions still give strong

guarantees for new code
● Late adoptions can be done

gradually
● Low cognitive load, just use a

package instead of another
● Security reviews only need to

affect a super small package.

49

Adoption

Many adopters
● Angular
● React
● Go safehtml
● Python Security Manager
● Ruby safe active records
● Most Object-relational mapping

libraries
● Closure templates

https://github.com/google/python-security-manager
https://github.com/google/safe-active-record

50

Piutost che
nient, l'è mei
piutost.

51

^(?!(xx+)\1+$)xx+$

"0 0\n\n"

Honorable mentions
● Regular expressions are

potential sources of danger
● Parsers should be

trustworthy, don't pick them
just because they have "fast"
in the name

● Don't parse things twice,
once parsed, transform data
into structs and pass those
around.

● Don't copy paste from
stackoverflow

52

Thank you for listening

● Find me as empijei anywhere you
like, preferably gmail or telegram
○ empijei@gmail.com
○ t.me/empijei

● Feel free to contact me for
anything

● I also do freelance consultancy if
you think your company might be
interested

● Link to these slides:
https://t.ly/ECxzE

53

Annoyance

Accept language headers

54

Tricks

Exceptions
The raw package

