
1

Sedlacek Tomas
CTO at Dataddo

pgq
postgre queues

2

DATADDO

A data integration platform.

Extracting, Transforming and Loading the data.
databases, http, file storages, webhooks

Composed of various Go services running in AWS EKS.

3

4

QUEUES
● Communication channel
● Task scheduling
● Background processing (asynchronous)
● Load balancing (overload prevention)
● Throttling and rate limiting
● Handling peak loads, Scalability, Event-driven architecture,

Task distribution, Fault tolerance with retries

and much more…

The purpose of the queues in the SW design

5

Available Open Source

MESSAGE QUEUES
[BROKERS]

● RabbitMQ (www.rabbitmq.com)

● Apache Kafka (kafka.apache.org)

● Apache ActiveMQ (activemq.apache.org)

● NATS (nats.io)

● NSQ (nsq.io)

● Redis (redis.io)

● Amazon SQS, Google Cloud Pub/Sub, …

and much more…

6

pgq

● Open source go package
● Queues on top of postgres
● Uses regular SQL statements
● Reliable and easily observable
● Basic consumer and publisher implementations

what is the

go.dataddo.com/pgq

7

Why to use pgq?

● postgres just works!

● postgres is feature rich, scalable and performant

● SQL (your developers already know SQL, right?)

● simple stack (no need for maintaining additional component/technologies)

● universally usable for many scenarios

8

When to pick pgq ?

● You want to build resilient systems

● You are already using postgres in your stack

● You do not want to administer another technology

● You want to easily observe the queues

● Your message rate is not measured in billions

(satisfaction guaranteed)

9

Where do we use pgq in Dataddo ?

● Consumers of the long-running jobs
loading & writing & processing data
[200k+ of such jobs a day]

● Consumers of the short jobs
sending emails & saving logs & updating entities
[1000k+ of such jobs a day]

● Asynchronous apps communication
go & php & node.js

● Monitoring of our platform
consumers rate & errors & peaks
[AWS RDS cluster 2x db.r6g.large, 2cpu & 16gb ram]

10

CREATE TABLE IF NOT EXISTS my_queue
(
 id UUID DEFAULT,
 created_at TIMESTAMPTZ NOT NULL,
 started_at TIMESTAMPTZ NULL,
 locked_until TIMESTAMPTZ NULL,
 processed_at TIMESTAMPTZ NULL,
 consumed_count INTEGER,
 error_detail TEXT NULL,
 payload JSONB NOT NULL,
 metadata JSONB NOT NULL
);

CREATE INDEX IF NOT EXISTS my_index
ON my_queue(processed_at)
WHERE (processed_at IS NULL);

Queue/Table

Every queue is just the
single postgres table.

Table has index for better
performance.

Creating the

11

The message

The message is the single
row/record in the queue
table.

The processed messages
are kept in the queue.

type Message interface {

Metadata() map[string]string

Payload() json.RawMessage

}

12

Publisher
creating the

Publish message which
contains metadata and
payload, the consumer
understands.

Note: In fact the publisher just
publishes the new row to the
postgres table.

db, _ := sql.Open("postgres", dsn)

pub := pgq.NewPublisher(db)

payload := json.RawMessage(

`{"foo":"bar"}`

)

msg := pgq.NewMessage(nil, payload)

pub.Publish(ctx, "my_queue", msg)

13

Consumer
creating the

Consumer searches for the
messages to be processed
in the queue. It updates the
rows when the message is
processed.

db, _ := sql.Open("postgres", dsn)

consumer := pgq.NewConsumer(

db,

"my_queue",

myHandler,

)

consumer.Run(ctx)

14

Consumer handler
creating the

Handler treats the message
and sets the result.

Note: The handler is your own
struct and it can contain whatever
custom logic you have in order to
process the message.

type handler struct {}

func (h *handler) HandleMessage(

 _ context.Context,

 msg pgq.Message,

)(processed bool, err error) {

fmt.Println(string(msg.Payload()))

return true, nil

}

15

Lifecycle

Every consumer polls the
queue table in the given
intervals and searches for the
messages to process.

When there is no yet
unprocessed message, it idles
for a while and retries again.

The pgq consumer Run

Find message

Found
some? Idle

No

Process
message

Yes

Update

16

UPDATE "my_queue"
 SET
 locked_until = $1,
 started_at = CURRENT_TIMESTAMP,
 WHERE id IN (
 SELECT id FROM "my_queue"
 WHERE (
 locked_until IS NULL OR
 locked_until < CURRENT_TIMESTAMP
)
 AND processed_at IS NULL
 ORDER BY
 created_at ASC LIMIT $2
 FOR UPDATE SKIP LOCKED
)
RETURNING id, payload, metadata;

Find message

FOR UPDATE SKIP LOCKED is
useful in situations where
multiple transactions are trying
to update the same set of rows
simultaneously. It locks the
selected rows but skips over any
rows already locked by other
transactions, thereby reducing
the likelihood of deadlocks.

consumer query to

17

Demo time

[alt: Gopher scared]

Now we should
show them how

it works.

18

running Postgres
prerequisite

You can try it on your own
machines too.

https://github.com/dataddo/pgq-demo

Note: You need to have the running
postgre db available for the demo.

Please see the Makefile in the
pgq-demo repository to get started.

docker run
--name pgq-postgres
-e POSTGRES_USER=pgq
-e POSTGRES_PASSWORD=pgq
-p 5432:5432
-d
postgres:16.0

https://github.com/dataddo/pgq-demo

19

usage

Following these principles will make your
pgq usage smooth.

Recommendations

● Keep table index
● Configure the consumer options

 according to your concrete needs
[lock duration, polling interval, max parallel]

● Enable table partitioning or clear old
messages when you do not need it.

● Observe the queue size, setup alerts
● Observe the errors to detect application

failures and bugs in your code
● Kubernetes autoscaling using Keda

20

HOW DOES IT LOOK LIKE IN A REAL LIFE?

21

Links and resources

PGQ:
go.dataddo.com/pgq
github.com/dataddo/pgq-demo

Gopher images and icons:
github.com/MariaLetta/free-gophers-pack

KEDA PostgreSQL:
https://keda.sh/docs/2.12/scalers/postgresql/

22

TOMAS SEDLACEK
tomas.sedlacek@dataddo.com

23

Presentation slides buffer

The following slides will be used only in case of enough
free time at the end of the presentation.

24

SELECT * FROM my_queue;
Inspecting the queue table

id payload metadata created at locked until processed at started at error detail consumed

UUID JSON JSON Timestamp Timestamp Timestamp Timestamp String Int

a0… {foo:bar…} {} 2023-… 2023-… null 2023-… null 1

e7… {baz:bat} null 2023-… null null null null 0

d2… {go:lang…} {o:1…} 2023-… null 2023-… 2023-… null 1

b6… {lan:go…} null 2023-… null 2023-… 2023-… null 1

b6… {lag:ja…} {f:l…} 2023-… null 2023-… 2023-… null 1

25

The message struct

Under the hood the
message contains the fields
and functions necessary for
operating pgq.

type message struct {

 id uuid.UUID

 metadata map[string][string]

 payload json.RawMessage

 once sync.Once

 ackFn func(ctx Context) error

 nackFn func(Context, string) error

 discardFn func(Context, string) error

}

26

Ack [acknowledge] when all went fine:
UPDATE my_queue
 SET
 locked_until = NULL,
 processed_at = CURRENT_TIMESTAMP
 WHERE id = $1;

Nack: when something went wrong:
UPDATE my_queue
 SET
 locked_until = NULL,
 error_detail = $2
WHERE id = $1;

Finish queries

When the message is
processed (ack/nack)

pgq consumer

27

Discard [reject] on invalid message:

UPDATE my_queue
 SET
 locked_until = NULL,
 processed_at = CURRENT_TIMESTAMP,
 error_detail = $2
 WHERE id = $1;

Reject query

Discard the message when
it is not valid.

pgq consumer

