My key takeaways from my 5-year experience of
developing and maintaining two open source
projects aimed at automating iOS devices

and why working with the Gopher was a good choice!

Let’'s watch 2 minutes of a
demo to give you all some
context

https://www.youtube.com/watch?v=agM-g01gP2c

https://www.youtube.com/watch?v=aqM-g01qP2c

1. The story of QVH

quicktime_video_hack, or why | suck at naming projects & &

Mac OS X allows you to mirror
IOS video and audio with
Quicktime. And | wanted to build
the same, but on Linux

https://docs.google.com/file/d/1-50P29rBzg3baGw395FkDoAiu6xWq_Ed/preview

BUT HOW TO SOLVE? &)

1. let's google it & &

2. found video on youtube &5

3. found discussions online without solutions (=
4. no source code &

A

5. how hard can it be? &*

Two ways of finding out how these features work

1. Try and understand from disassembled code

Disassemble the binary and try to understand it using static analysis and a
debugger

sub_10001852b(

ri3 =
rbx = o
(*qword_100021cc8 != Oxffffffffffffffff) {
dispatch_once(qword_100021cc8, ~ {/* block implemented at sub_100011220 x/ } }); N

r}lz = xqword_100021cco; That’S pretty hard f\:

= CFStringCreateWithCharacters(%x_kCFAllocatorDefault, ri4, ri5);
*(*x) (& + 0x8) = 0x1;
= rl3;
*(int32_t %) (& + 0x8) = rbx;
sub_100012324(r12, , & , &
sub_10000e8d8 (&)5
rax = rax;

rax;

Two ways of finding out how these features work

Eavesdropping on USB is luckily quite easy nowadays on Mac OS X

ifconfig XHC20 up

Using Wireshark | extract a Hexdump

But what does it all mean?

00000000
00000010
00000020
00000030
00000040

00000050
00000060
00000070
00000080

How do Messages work when sent over Streams?

1. Fixed length
2. Delimiter-based messages
3. 4 byte int containing length + payload of that length

UL 10 00 00 00

00000010 10 00 00 00 67 6e 69 70 00 00 00 00 01 00 00 00
00000020 24 00 00 00 63 6e 79 73 01 00 00 00 00 00 00 00

00000030 61 70 77 63 40 ae d5 18 01 00 00 00 b 57 8d 19
00000040 01 00 00 00 44 00 00 00 63 6e 79 73 40 15 el 5c¢

The strings are a good starting point but what is a gnip?

Endianness! It's ping not gnip! Suddenly it all makes sense!

ASYN 0x6173796E
FEED 0x66656564
RELS 0x72656C73
HPD1 0x68706431
HPA1 0x68706131
NEED Ox6E656564
EAT 0x65617421
KeyValuePairMagic 0x6B657976
StringKey 0x73747268B
IntKey 0x6964786B
BooleanValueMagic 0x62756C76
DictionaryMagic 0x64696374
DataValueMagic 0x64617476

Working through the Hex..

Here you will find sbuf, which is a serialized CMSampleBuffer instance from
Apple's CoreMedia Framework. It contains raw h264 units in sdat!

00000000 d7 65 01 00 60 2f c3 5c¢ |-e..nysa /.X.::.
00000010 64 65 65 66 66 75 62 73 |deef.e..[{IY ...
00000020 73 74 70 6f 3b 57 00 00 -
00000030 01 00 00 00 00 00 00 00
00000040 61 69 74 73 00 00 00 00
00000050 01 00 00 00 00 00 00 00
00000060 3b 57 00 00 01 00 00 00
00000070 00 00 00 00 00 00 00 00
00000080 00 00 00 00 00 00 00 00 b..|
(LI LI 74 61 64 73 06 05 la 47 GVI.\|
000000a@ 4c 43 3f 94 dl 43 a8 01
000000b0 02 01 31 2d 62 58 25 b8
000000c0 84 35 2d 02 4d cd b6 1a
000000d0 46 bf ea 3e 6d 84 5a 00
000000e0 03 00 00 03 53 80 bf dl1
000000f0 21 61 98 83 af of 67 7f

Finally, create a video

A nice example for a delimiter based protocol, writing h264 raw NalLus like this, will
create a playable video file!

delimiter

[] {00, 00, 00, 01}

(avfw AVFileWriter) writeNalu(naluBytes []) error {

_, err := avfw.h264FileWriter.Write(delimiter)
err != {
err
}
_, err = avfw.h264FileWriter.Write(naluBytes)
err != {
err
}

Why is Golang great for this?

Accessing USB devices is very easy with the gousb package

ctx := gousb.NewContext()
devices, err := ctx.0OpenDevices((desc *gousb.DeviceDesc) bool {

validDeviceChecker(desc)

})

device := devices[0]

conf, _ := device.Config(configIndex)

iface, _ := conf.Interface(confNum, altSettingIndex)

inEndpoint, _ := iface.InEndpoint(grabInboundBulkEndpoint(iface.Setting))
outEndpoint, _ := iface.OutEndpoint(grabOutboundBulkEndpoint(iface.Setting))
stream, _ := inEndpoint.NewStream(4096, 5)

buffer := make([] , 65536)
stream.Read(buffer)

outEndpoint.Write([] 11,2,3,4})

Why is Golang great for this?

Unlike Java, there are unsigned ints! That makes network and protocol coding
much nicer.

unsigned_one_byte_integer = 3
unsigned_two_byte_integer =6
unsigned_four_byte_integer = 12
unsigned_eight_byte_integer = 24
some_Tfloat = 0.5

float_as_uint64
float_as_uint64 = math.Float64bits(some_float)
binary.LittleEndian.PutUint64(someByteArray, float_as_uint64)

Why is Golang great for this?

Byte Slices are a true blessing when building codecs

responseBytes := make([] , 24)
binary.LittleEndian.PutUint32(responseBytes, 24)
binary.LittleEndian.PutUint32(responseBytes[4:], ReplyPacketMagic)
binary.LittleEndian.PutUint64(responseBytes[8:], sp.CorrelationID)
binary.LittleEndian.PutUint32(responseBytes[16:], 0)

binary.LittleEndian.PutUint32(responseBytes[20:], 0)

responseBytes := make([] , 60)
length := writePayload(responseBytes[24:])

writeHeader(responseBytes[:24], length)

Why is Golang great for this?

You can even write structs directly to byte streams!

CMTime {
CMTimeValue
CMTimeScale
CMTimeFlags
CMTimeEpoch

NewCMTimeFromBytes(data []) (CMTime, error) {
r := bytes.NewReader(data)
cmTime CMTime
err := binary.Read(r, binary.LittleEndian, &cmTime)
err != {
cmTime, err

cmTime,

Reverse Engineering Makes You a Better Engineer!

Make theories on how "they" built it, and test them one by one

Writing clean, unit tested application code without knowing the end result
Learn many cool new things like: networking basics, h264, USB coding
Low Level: There is no magic

+You get a lot of Love from people &

I'M KEALLY LOOKIMG FORWARD TO UEIMG IT, I'YE
ACTUALLY EEEM DREAMIMG OF ZOMETHIMG LIKE AT THE TIME | HAD A LOOK AT THE QUICKTIME [..]
THI= FOR A LOMG TIME,. FOR S0OME FUELIC REWERZE EUT | LET IT DOWH. AMD MOW | ZAW YOUR
EMGIMEERIMG EFFORT OF THIZ AMAZIMG JOE. IM GO (1),
I0SZCREEMCAFTUREASZISTAMT THAT'S EEEM OH _f.r"
MAC FOR & YEARS MOW, I'M EXCITED, ESFECI

[y

2. Go-1I0S

It was written in Go, and it does things with |OS devices, yes |
suck at naming things still &

Some stats and a cute logo

Sponsored by big testing companies,

used by many more

115 MEMBERS EE]E npm install go-ios EEEICHETY | o) X Follow @daniel1paulus JROTGICEES ='~ZWWN

Open Source Lib Design Considerations

Written in Golang — AOT compiled binary, great for using it from other tools
The CLI output is JSON first for easy parsing

Uses DocOpt, all in one binary command

Just run “npm install -g go-ios” and you're good to go

| like convenience, many commands automagically configure things or make them
very easy

Open Source Lib Design Considerations

Comes with modules and the CLI code to explain how to use them, importing it
into your Go programs is easy

Comes with a powerful debug proxy tool

MIT License, if you want to build cool stuff with it like automated- iOS device
configuring raspberry pi’'s.. well you can! And | am happy to help

Pitfalls

Golang library dev pitfalls | learned about the hard way

Golang is not Java - Daniel’s turn

| wrote a lot of Netty (Async Java Networking) before, so | thought this was a good
idea:
1. Read messages from the device in a for loop in a separate go routine, using a

custom codec
2. Set up a channel that would allow to receive messages
Allows async code, but was totally unnecessary and overengineered
4. Unfortunately sometimes, you need to change codecs on the fly..

W

This is not Java - Daniel’s turn

Which resulted in terrible code like this:

func (conn *DeviceConnection) sendForProtocolUpgrade(muxConnection *MuxConnection,
message interface{}, newCodec Codec) [lbyte {

log.Debug("Protocol update to ", reflect.TypeOf(newCodec), " on ", &conn.c)

conn.stopReadingAfterNextMessage()

conn.send(message)

responseBytes := <-muxConnection.ResponseChannel

conn.activeCodec = newCodec

conn.startReading()

return responseBytes

This is not Java - Daniel’s turn

| later realized, synchronous code is totally fine and with the Reader interface |
could solve this problem much more elegantly:

// ReadMessage grabs the next LockDown Message using the PlistDecoder from the underlying

// DeviceConnection and returns the Plist as a byte slice.

func (lockDownConn *LockDownConnection) ReadMessage() ([lbyte, error) {

reader := lockDownConn.deviceConnection.Reader()
resp, err := lockDownConn.plistCodec.Decode(reader)
if err != nil {

return make([]byte, @), err
}

return resp, err

A Fatal misconception

log.Fatal() sounds like a really nice way to fail when, well things fail and cannot
be recovered. However:

(logger *Logger) Fatal(args
logger.Log(args...)

logger.Exit(

- defer does not work @

- test clean up does not work @) (can be a big deal with stateful stuff, like
physical devices)

| even had this in library code, not just tests £§ EVER EAE A VA

% CGO &

CGO can be good with stable, maintained libs like gousb - in any other case
& & & & Welcome-to - Hell & & & &
| tried to use Gstreamer, created a fork of a fork to make it work

Memory leaks, segfaults, weird errors.

you must add recover in *every* goroutine, there is no bubbling up of panics like in
f.ex. NodedS

go-ios contains A LOT of type casts and map access, this made some users really
sad

A h
|

mappyMapMap :=

ET AL ET L ET

thisIsaStringRight := mappyMapMap|[
(thisIsaStringRight)

How do you actually handle errors?

> (conn *Connection) Push(srcPath, dstPath

ret := jios.PathExists(srcPath)
lret (

f, err := o0s.0pen(srcPath)
- erp != :
f.Close()

fileInfo, _ := conn.Stat(dstPath); filelnfo !=

fileInfo.IsDir() {
dstPath = path.Join(dstPath, filepath.Base(srcPath))

conn.WriteToFile(f, dstPath)

How do you actually handle errors?

This is how | will do it from now on as it gives me something like a stracktrace. But
| actually don’t know if this a good way to solve it. If you can share your views on
how to do great error handling in go, please do.

Connection) Push(srcPath, dstPath st
ios.PathExists(srcPath)

Open(srcPath)

Ahb

Make sure people don’t delete their friend’s phones &

I am still sorry about this one. Always keep in mind that folks might actually
use your library, so make good design decisions and ensure it is safe to
use.

Well | have to say that the erase command works very well

| factory resetted my friend phone remotely with Wi-Fi because | didn't put a specific device id with the command @&

Being an Open source
maintainer is awesome and
you can do it too!

OU(CANIDOIIY
;"— - e

-
Y
e o
= 2 L o
5 s

‘TINY CAT SAYS

g ‘1' ¢

'YOU'CAN DO ITH!

Practical tips

Build something useful to learn a new language and open source it, don't just
follow tutorials and create uninteresting stuff on Github

Build a community and be accessible

Be friendly and kind

Practical tips

Look for sponsors
Look for contributors

If you decide to go with MIT, people will copy your code, companies will use it
without any attribution or paying for it. That’s just the way things are :-)

Try growth hacks! It’s fun!

Create content! (I need to do that more)

Practical tips

| work on this at night when the kids are sleeping

| work on this when my wife is driving and | am sitting next to her
| write code at night

It's hard and sometimes | need a break to not burn out

— Do take breaks, accept your personal limits

What | get out of it and what it taught me

Prioritization& Product Thinking!

Seeing other people contribute is absolutely beautiful

| built something that people actually use

Working on something long term, where your decisions matter
| met incredibly cool people and made great friends

and finally... THE USE CASES!

Closing comments

- Next up: i0OS 17 support. It's tough, but | got some help now.

- Next up: the REST API will be finished you can use it from other languages
more easily

- Next up: Some more videos and blog posts to make it easier to use it

Call for contribution: Are you interested in fiddling with devices and low
level code? Contributing to open source? Or maybe in writing great docs,
recording videos, helping the community out and similar? | can definitely need all
the help | can get! Seek me out later or reach out on Discord please.

