
My key takeaways from my 5-year experience of
developing and maintaining two open source

projects aimed at automating iOS devices

and why working with the Gopher was a good choice!

Let’s watch 2 minutes of a
demo to give you all some

context
https://www.youtube.com/watch?v=aqM-g01qP2c

https://www.youtube.com/watch?v=aqM-g01qP2c

1. The story of QVH
quicktime_video_hack, or why I suck at naming projects 😅😅

Mac OS X allows you to mirror
iOS video and audio with
Quicktime. And I wanted to build
the same, but on Linux

https://docs.google.com/file/d/1-50P29rBzg3baGw395FkDoAiu6xWq_Ed/preview

BUT HOW TO SOLVE? 😱
1. let's google it ☝😌

2. found video on youtube 🥳

3. found discussions online without solutions 😑

4. no source code 😭

5. how hard can it be? 🤨

Two ways of finding out how these features work

1. Try and understand from disassembled code

Disassemble the binary and try to understand it using static analysis and a
debugger

That’s pretty hard 🤔

Two ways of finding out how these features work

Eavesdropping on USB is luckily quite easy nowadays on Mac OS X

sudo ifconfig XHC20 up

Using Wireshark I extract a Hexdump

But what does it all mean?

How do Messages work when sent over Streams?

1. Fixed length
2. Delimiter-based messages
3. 4 byte int containing length + payload of that length

The strings are a good starting point but what is a gnip?

Endianness! It’s ping not gnip! Suddenly it all makes sense!

Working through the Hex..

Here you will find sbuf, which is a serialized CMSampleBuffer instance from
Apple's CoreMedia Framework. It contains raw h264 units in sdat!

Finally, create a video

A nice example for a delimiter based protocol, writing h264 raw NaLus like this, will
create a playable video file!

Why is Golang great for this?

Accessing USB devices is very easy with the gousb package

Why is Golang great for this?

Unlike Java, there are unsigned ints! That makes network and protocol coding
much nicer.

Why is Golang great for this?

Byte Slices are a true blessing when building codecs

Why is Golang great for this?

You can even write structs directly to byte streams!

Reverse Engineering Makes You a Better Engineer!

Make theories on how "they" built it, and test them one by one

Writing clean, unit tested application code without knowing the end result

Learn many cool new things like: networking basics, h264, USB coding

Low Level: There is no magic

+You get a lot of Love from people 🥰

2. Go-iOS
It was written in Go, and it does things with iOS devices, yes I

suck at naming things still 😅

Some stats and a cute logo

Sponsored by big testing companies,

 used by many more

Open Source Lib Design Considerations

Written in Golang → AOT compiled binary, great for using it from other tools

The CLI output is JSON first for easy parsing

Uses DocOpt, all in one binary command

Just run “npm install -g go-ios” and you’re good to go

I like convenience, many commands automagically configure things or make them
very easy

Open Source Lib Design Considerations

Comes with modules and the CLI code to explain how to use them, importing it
into your Go programs is easy

Comes with a powerful debug proxy tool

MIT License, if you want to build cool stuff with it like automated- iOS device
configuring raspberry pi’s.. well you can! And I am happy to help

Pitfalls
Golang library dev pitfalls I learned about the hard way

Golang is not Java - Daniel’s turn

I wrote a lot of Netty (Async Java Networking) before, so I thought this was a good
idea:

1. Read messages from the device in a for loop in a separate go routine, using a
custom codec

2. Set up a channel that would allow to receive messages
3. Allows async code, but was totally unnecessary and overengineered
4. Unfortunately sometimes, you need to change codecs on the fly..

This is not Java - Daniel’s turn

Which resulted in terrible code like this:

This is not Java - Daniel’s turn

I later realized, synchronous code is totally fine and with the Reader interface I
could solve this problem much more elegantly:

A Fatal misconception

log.Fatal() sounds like a really nice way to fail when, well things fail and cannot
be recovered. However:

- defer does not work 😱
- test clean up does not work 😱 (can be a big deal with stateful stuff, like

physical devices)
- I even had this in library code, not just tests 🙈 🙉🙈 🙉🙈 🙉🙈 🙉🙈 🙉

😭 CGO 😭
CGO can be good with stable, maintained libs like gousb - in any other case

🔥🔥🔥🔥 Welcome - to - Hell 🔥🔥🔥🔥
I tried to use Gstreamer, created a fork of a fork to make it work

Memory leaks, segfaults, weird errors.

panic() & recover() are not global 😣 😖 😫 😩
you must add recover in *every* goroutine, there is no bubbling up of panics like in
f.ex. NodeJS

go-ios contains A LOT of type casts and map access, this made some users really
sad

💥
💥
💥

💥

How do you actually handle errors?

How do you actually handle errors?

This is how I will do it from now on as it gives me something like a stracktrace. But
I actually don’t know if this a good way to solve it. If you can share your views on
how to do great error handling in go, please do.

Make sure people don’t delete their friend’s phones 😅

I am still sorry about this one. Always keep in mind that folks might actually
use your library, so make good design decisions and ensure it is safe to
use.

Being an Open source
maintainer is awesome and

you can do it too!

Practical tips

Build something useful to learn a new language and open source it, don’t just
follow tutorials and create uninteresting stuff on Github

Build a community and be accessible

Be friendly and kind

Practical tips

Look for sponsors

Look for contributors

If you decide to go with MIT, people will copy your code, companies will use it
without any attribution or paying for it. That’s just the way things are :-)

Try growth hacks! It’s fun!

Create content! (I need to do that more)

Practical tips

I work on this at night when the kids are sleeping

I work on this when my wife is driving and I am sitting next to her

I write code at night

It’s hard and sometimes I need a break to not burn out

→ Do take breaks, accept your personal limits

What I get out of it and what it taught me

Prioritization& Product Thinking!

Seeing other people contribute is absolutely beautiful

I built something that people actually use

Working on something long term, where your decisions matter

I met incredibly cool people and made great friends

and finally… THE USE CASES!

Closing comments

- Next up: iOS 17 support. It’s tough, but I got some help now.
- Next up: the REST API will be finished you can use it from other languages

more easily
- Next up: Some more videos and blog posts to make it easier to use it

Call for contribution: Are you interested in fiddling with devices and low
level code? Contributing to open source? Or maybe in writing great docs,
recording videos, helping the community out and similar? I can definitely need all
the help I can get! Seek me out later or reach out on Discord please.

