Sco\lir\g Coffee With Goroutines

Golab 2023 - Florence

Sadie Freeman
Senior Backend Engine_er

All &Gophers welcome!

// TODO:

Step l:t/ Step
Sco\hng for SPee,d
Sco\l?ng for load

Case Study
Link to tutorial

How can we serve

1. 4 lot of coffee
2. To o lot of Pe,ople,

3. As fast as we can

Spe,e_d + Load

Coffee Actions

Toke paymen‘t
Steam milk

Make espresso

@ No Concurre,nct/

func main() {
start := time.Now()
PayForCoffee()
MakeEspresso()
SteamMilk()
log.Printf("Coffee made, 1 customer served")

timeTaken := time.Since(start)
log.Printf("Took %s to serve coffee", timeTaken)

No Concurre,nct/

func PayForCoffee() {
time.Sleep(2 * time.Second)
log.Printf("Coffee paid for & ")
I

func MakeEspresso() {
time.Sleep(2 * time.Second)
log.Printf("Espresso made =")

}

func SteamMilk() {
time.Sleep(2 * time.Second)
log.Printf("Milk steamed Y ")

@ No Concurre_nct/

'go run main.go

Coffee paid for @&

Espresso made =

Milk steamed

Coffee made, 1 customer served
Took 6.02238615s to serve coffee

@ Serve more customers

func ServeCustomer(w http.ResponseWriter, r *http.Request) {

start := time.Now()

numCustomers, err := strconv.Atoi(strings.TrimPrefix(r.URL.Path, "/serve-customer/"))

if err != nil || numCustomers == 0 {
numCustomers = 1

} func MakeCoffee() {

for i1 := 0; i < numCustomers; i++ { MakeEspresso()
MakeCoffee() Stealilk()
count++

} Is

timeTaken := time.Since(start)

log.Printf("Took %s to serve coffee to %v customer(s)", timeTaken, count)

@ Serve more customers

'go run main.go’

‘curl http://localhost:8080/serve-customer/3"

Took 18.009306471s to serve coffee to 3 customer(s)

@ Use o Goroutine

go MakeCoffee()

Set of instructions that

T'f\re&dsz Can be cun ;Hdepeﬂdeﬂ'tll/

Coy\Qurrey\‘th; HQPPCV\MS, at ‘the Some ‘t?me

@ Use a Goroutine

'go run main.go’

‘curl http://localhost:8080/serve-customer/3’

Took 12.548us to serve coffee to 3 customer(s)
Coffee paid for &

Coffee paid for &

Coffee paid for &

Espresso made =

Espresso made =

Espresso made =

Milk steamed U

Milk steamed |

Milk steamed U

@ Add Wait 67r*oup

wg := sync.WaitGroup{}

count := 0
for 1 := 0; 1 < numCustomers; i++ {
wg.Add(1)
go MakeCoffee(&wq)
count++
} func MakeCoffee(wg *sync.WaitGroup) {
wg.Wait() defer wg.Done()

PayForCoffee()
MakeEspresso()
SteamMilk()

@ Add Wait 67r*oup

'go run main.go’

‘curl http://localhost:8080/serve-customer/3’

Coffee paid for &

Coffee paid for &

Coffee paid for &

Espresso made =

Espresso made =

Espresso made =

Milk steamed U

Milk steamed |

Milk steamed U

Took 6.008748085s to serve coffee to 3 customer(s)

@ Add MORE Goroutines

func MakeCoffee(wg *sync.WaitGroup) {
defer wg.Done()

newWg := sync.WaitGroup{}
newWg.Add(3)

go PayForCoffee(&newWg)
go MakeEspresso(&newWg)
go SteamMilk(&newWq)
newWg.Wait()

@ Add MORE Goroutines

'go run main.go’

‘curl http://localhost:8080/serve-customer/3’

Espresso made =

Coffee paid for &

Coffee paid for &

Milk steamed U

Espresso made =

Milk steamed U

Milk steamed U

Espresso made =

Coffee paid for &

Took 2.002738958s to serve coffee to 3 customer(s)

o ———
$ € $€ 4

IR S RS/
$ MORE CUSTOMEIRS!! $

€ € % <

@ Containernze

Dockert le

FROM golang:1.18.4-alpine
WORKDIR /app

COPY go.mod ./
RUN go mod download

COPY *.go ./
RUN go build -o /coffee-shop
EXPOSE 8080

CMD ["/coffee-shop"]

@ Containerize
Makef: le

build:
docker build --tag coffee-shop .

run: build
docker run -d --name coffee-shop -p 8080:8080 coffee-shop

stop:
docker stop coffee-shop
docker container rm coffee-shop

@ Containerize

‘make build’ ‘make run’

/

Imoacge
J Container

Coffee Shop CoPfee Shop

(¢) Containerize

{ @ coffee-shop coffee-shop
RUNNING

2022/08/09
2022/08/09
2022/08/09
2022/08/09
2022/08/09
2022/08/09
2022/08/09
2022/08/09
2022/08/09
2022/08/09

18:37:38
18:37:38
18:37:38
18:37:38
18:37:38
18:37:38
18:37:38
18:37:38
18:37:38
18:37:38

= Logs

Coffee paid for @

Milk steamed |

Milk steamed

Coffee paid for @&

Coffee paid for @&

Milk steamed

Espresso made @

Espresso made @

Espresso made &

Took 2.001408751s to serve coffee to 3 customer(s)

@ De,ploy on Kubernetes

deploymen‘t.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: coffee-shop
namespace: default
spec:
replicas: 1
selector:
matchLabels:
coffee-shop: web
template:
metadata:
labels:
coffee-shop: web
spec:
containers:
- name: coffee-shop
image: coffee-shop
imagePullPolicy: Always

@ quloy on Kubernetes

~
Kubermetes Cluster

Container

Coffee Shop

Sca\hmj Op‘tion 1

Vertical

@ Set Resources

resources:
Limits:
cpu: 1lm
memory: 1OMi
requests:
cpu: 1m
memory: 1OMi

@ Set Resources

3 —> 2.002422959%
20 —a 2.001635459¢
300 = 375216496

3000 —3» OOM Killed

Restarts: 1

@ Bump resources

resources:
Llimits:
cpu: 4
memory: 3092M
requests:
cpu: 2
memory: 1024M

@ Bump resources

30,000 —3= 37442293

3,000,000 —> OOM Killed

Sco\ling Op‘t?on o |

Pods

—

e ——

1
Hﬁl

ﬁ

Horizontal

Scale upE Pods

replicas: 2

Mgre,ss.c/o\w\[

apiVersion: networking.k8s.io/vl
kind: Ingress

metadata:
namespace: default
name: coffee-shop
labels:
ingress-controller: nginx
annotations:

kubernetes.io/ingress.class: "nginx"

spec:
rules:
- host: "localhost"
http:
paths:
- pathType: Prefix
path: "/"
backend:
service:
name: coffee-shop
port:
number: 80

Scale upE Pods

de(oloc/w\en‘t .L/ownl

apiVersion: vl
kind: Service
metadata:

name: coffee-shop

labels:
run: coffee-shop

spec:

ports:

- port: 80
protocol: TCP
targetPort: 8080

selector:
run: coffee-shop

type: NodePort
sessionAffinity: None

Kubermetes Cluster

Container Container

Coffee Skop Coffee Shop

Sca\le upE Pods

30,000 —3> 2.2651685%49s
30,000 —> 2.210M#51s

Watch out...

Do you need this?
Use Wail &roupes
Resources have liw\i‘ts
InFinite 3or‘ou‘tines?

Toke Paymen‘t 2 Pods
Steam Milk 2 Pods

Maoke EsPre,sso 4 Pods

Main

Kubernetes Cluster

Toke Paymey\‘t Steam Milk

Moke Espre,sso

Flow Blockchain

Pock
4 j a8 N
Mowment Mowent
_ J L J
2 Yoummn
Mowment Mowent
_ J Y,

Database

Events

Check Events

M?V\‘t?nﬁ

Se,r\dir\s, Transactions
Che,cking Transactions

. No Concur‘r‘e_nct/

One at a Time

‘ No Concurre_ncy

for {

select {

case <-ticker.C:
checkEvents()
mint()
sendTransactions()
checkTransactions()

case <-app.quit:
cancel()
ticker.Stop()
return

‘ Use Goroutines

Four at o Time

‘ Use Goroutines

go checkEvents()

go mint()

go sendTransactions()
go checkTransactions()

Send Transactions

One ot & Time

’ Add More Goroutines

MORE ot o time

>
TX

>
TX

>
TX

TX

‘ Add More Goroutines

for _, transaction := range ts {
wg.Add(1)
go func(wg *sync.WaitGroup, tx *transactions.SendableTransaction) {
defer wg.Done()
if err := processSendableTransaction(); err != nil {
logger.Warn("error processing tx", err)

}

}(&transaction)

}
wg.Wait()

’ Sph’c De,plon/ments
Check Events

M?V\'t?na

Check Transactions

Send Transactions

How did we scale?

- Bl/ using Goroutines (:\ust A Pe,w)
- Scale l«oﬁzon‘to\“t/ + ver'ticallc/

- Split ifferent responsibilities
in different deployme_n‘ts

@ start with o concurrency

’ Use Goroutines

@ Use Goroutines inside of Goroutines

. Scale ver'tically - add resource

. Scale hor?zontallc/ - adel pocls

‘ Spli‘t r}e,ploymen‘ts accordzng To Goroutine usage

Thank Lyou L Grazie

Code examples
Slides
Tutorial

|
https://bit.ly/golab-coffee

sadi epre,emom @3»«0\? l .COMm

THANK

@Sadief
on Github

sadiefreeman@gmail.com bit.ly/killerGo

