
JESÚS ESPINO
Software Engineer @ Mattermost

Dissecting a 
Channel in Go



INTRODUCTION

• Channels are one of the most commonly used built-in 
structures in go.

• We understand how to use them, but not necessarily how they 
work.

• We are going to analyze how they work under the hood.
• We are going to do it through an experimental approach.
• After this talk you will understand better how channels are 

shaped in memory and what are the implications of that.



CLASS MATERIALS

• The scalpel

• The microscope

• The subject



The scalpel func Scalpel(channel *(chan int32)) *channelStruct {
    cs := unsafe.Pointer(*(*uintptr)(unsafe.Pointer(channel)))
    return (*channelStruct)(cs)
}



The microscope func Microscope(cs *channelStruct) {
    fmt.Printf("Total data in queue: %d\n", cs.qcount)
    fmt.Printf("Size of the queue: %d\n", cs.dataqsiz)
    fmt.Printf("Buffer address: %p\n", cs.buf)
    fmt.Printf("Element size: %d\n", cs.elemsize)
    fmt.Printf("Queued elements: %v\n", *cs.buf)
    fmt.Printf("Closed: %d\n", cs.closed)
    fmt.Printf("Element Type Address: %d\n", cs.elemtype)
    fmt.Printf("Send Index: %d\n", cs.sendx)
    fmt.Printf("Receive Index: %d\n", cs.recvx)
    fmt.Printf("Receive Wait list first address: 0x%x\n", cs.recvq.first)
    fmt.Printf("Receive Wait list last address: 0x%x\n", cs.recvq.last)
    fmt.Printf("Send Wait list first address: 0x%x\n", cs.sendq.first)
    fmt.Printf("Send Wait list last address: 0x%x\n", cs.sendq.last)
    fmt.Println("-------------------------------")
}



The subject c := make(chan int32, 4)



Inside the subject type waitq struct {
    first uintptr
    last  uintptr
}

type channelStruct struct {
    qcount   uint
    dataqsiz uint
    buf      *[4]int32
    elemsize uint16
    closed   uint32
    elemtype uintptr
    sendx    uint
    recvx    uint
    recvq    waitq
    sendq    waitq
    lock uintptr
}

sendx
recvx



Channel creation

0

0 0 0 00 4 4 x

sendx
recvx

c := make(chan int32, 4)

cs = Scalpel(&c)

Microscope(cs)

--------------

Total data in queue: 0

Size of the queue: 4

Buffer address: 0xc000130060

Element size: 4

Queued elements: [0 0 0 0]

Closed: 0

Element Type Address: 4870720

Send Index: 0

Receive Index: 0

Receive Wait list first address: 0x0

Receive Wait list last address: 0x0

Send Wait list first address: 0x0

Send Wait list last address: 0x0



Insert into the channel

0

5 0 0 01 4 4 x

sendx

recvx

5

c <- 5

Microscope(cs)

--------------

Total data in queue: 1

Size of the queue: 4

Buffer address: 0xc000130060

Element size: 4

Queued elements: [5 0 0 0]

Closed: 0

Element Type Address: 4870720

Send Index: 1

Receive Index: 0

Receive Wait list first address: 0x0

Receive Wait list last address: 0x0

Send Wait list first address: 0x0

Send Wait list last address: 0x0



Fill the channel buffer c <- 4

c <- 3

c <- 2

c <- 1

Microscope(cs)

--------------

Total data in queue: 4

Size of the queue: 4

Buffer address: 0xc000130060

Element size: 4

Queued elements: [5 4 3 2]

Closed: 0

Element Type Address: 4870720

Send Index: 0

Receive Index: 0

Receive Wait list first address: 0x0

Receive Wait list last address: 0x0

Send Wait list first address: 0xc000028060

Send Wait list last address: 0xc000028060

0

5 4 3 24 4 4 x

sendx
recvx

1, 2, 3, 4



Read from the channel <-c

Microscope(cs)

--------------

Total data in queue: 4

Size of the queue: 4

Buffer address: 0xc000130060

Element size: 4

Queued elements: [1 4 3 2]

Closed: 0

Element Type Address: 4870720

Send Index: 1

Receive Index: 1

Receive Wait list first address: 0x0

Receive Wait list last address: 0x0

Send Wait list first address: 0x0

Send Wait list last address: 0x0

0

1 4 3 24 4 4 x

sendx
recvx

(5, true)



More reading <-c

Microscope(cs)

--------------

Total data in queue: 3

Size of the queue: 4

Buffer address: 0xc000130060

Element size: 4

Queued elements: [1 0 3 2]

Closed: 0

Element Type Address: 4870720

Send Index: 1

Receive Index: 2

Receive Wait list first address: 0x0

Receive Wait list last address: 0x0

Send Wait list first address: 0x0

Send Wait list last address: 0x0

0

1 0 3 23 4 4 x

sendx
recvx

(4, true)



Wait for data <-c
<-c
<-c
<-c
Microscope(cs)
--------------
Total data in queue: 0
Size of the queue: 4
Buffer address: 0xc000130060
Element size: 4
Queued elements: [0 0 0 0]
Closed: 0
Element Type Address: 4870720
Send Index: 1
Receive Index: 1
Receive Wait list first address: 0xc000194000
Receive Wait list last address: 0xc000194000
Send Wait list first address: 0x0
Send Wait list last address: 0x0

0

0 0 0 00 4 4 x

sendx
recvx

(1, true)
(2, true)
(3, true)



Close channel close(c)

Microscope(cs)

--------------

Total data in queue: 0

Size of the queue: 4

Buffer address: 0xc000130060

Element size: 4

Queued elements: [0 0 0 0]

Closed: 1

Element Type Address: 4870720

Send Index: 1

Receive Index: 1

Receive Wait list first address: 0x0

Receive Wait list last address: 0x0

Send Wait list first address: 0x0

Send Wait list last address: 0x0

1

0 0 0 00 4 4 x

sendx
recvx

(0, false)



References

• The channel go code: src/runtime/chan.go
• My code: http://github.com/jespino/dissecting-go

https://golang.org/src/runtime/chan.go
http://github.com/jespino/dissecting-go


Thank You

jespinog

jesus-espino
jespino


