JESUS ESPINO

Software Engineer @ Mattermost

Dissecting a
Channel in Go

INTRODUCTION

X _ X

60

c@s

Channels are one of the most commonly used built-in
structures in go.

We understand how to use them, but not necessarily how they
work.

We are going to analyze how they work under the hood.

We are going to do it through an experimental approach.

After this talk you will understand better how channels are
shaped in memory and what are the implications of that.

CLASS MATERIALS

- The scalpel
J
@ - The microscope

x@x
g T s« The subject

» The scalpel

func Scalpel(channel *(chan int32)) *channelStruct {
cs := unsafe.Pointer(*(*uintptr)(unsafe.Pointer(channel)))
return (*channelStruct)(cs)

P The microscope

func Microscope(cs *channelStruct) {

fmt.
fmt.
fmt.
fmt.
fmt.
fmt.
fmt.
fmt.
fmt.
fmt.
fmt.
fmt.
fmt.
fmt.

Printf("Total data in queue: %d\n", cs.qgcount)

Printf("Size of the queue: %d\n", cs.datagsiz)

Printf("Buffer address: %p\n", cs.buf)

Printf("Element size: %d\n", cs.elemsize)

Printf("Queued elements: %v\n", *cs.buf)

Printf("Closed: %d\n", cs.closed)

Printf("Element Type Address: %d\n", cs.elemtype)

Printf("Send Index: %d\n", cs.sendx)

Printf("Receive Index: %d\n", cs.recvx)

Printf("Receive Wait list first address: @x%x\n", cs.recvq.first)
Printf("Receive Wait list last address: @x%x\n", cs.recvq.last)
Printf("Send Wait list first address: @x%x\n", cs.sendq.first)
Printf("Send Wait list last address: @x%x\n", cs.sendq.last)
Println("------ - - - == - - - - - ")

» The subject

C

make(chan int32, 4)

P Inside the subject type waitq struct {
first uintptr

last wuintptr
lock }

gcount
datagsiz type channelStruct struct {

elemsize gcount uint
Eﬁ?“ype datagsiz uint

buf *[4]int32
elemsize uint16
closed uint32

elemtype uintptr

sendx uint
recvx uint
recvq waitq
sendq waitq

lock uintptr

P Channel creation

closed

)

lock

gcount
dataqgsiz
elemsize
elemtype

buf

c := make(chan int32, 4)
cs = Scalpel(&c)
Microscope(cs)

Total data in queue: ©

Size of the queue: 4

Buffer address: 0xc000130060
Element size: 4

Queued elements: [0 © 0 @]

Closed: ©

Element Type Address: 4876720

Send Index: @

Receive Index: ©

Receive Wait list first address: 0x0
Receive Wait list last address: 0x0
Send Wait list first address: 0x0©
Send Wait list last address: 0x@

P Insert into the channel ¢ <- 5

5 \\\\\\\ Microscope(cs)

closed

lock Total data in queue: 1

gcount Size of the queue: 4

dataqgsiz)

B Buffer address: 0xc000130060

elemtype Element size: 4

buf
Queued elements: [5 0 0 0]
Closed: ©

Element Type Address: 4870720

Send Index: 1

Receive Index: ©

Receive Wait list first address: 0x@
Receive Wait list last address: 0x©
Send Wait list first address: 0x0
Send Wait list last address: 0x0

P Fill the channel buffer

lock

gcount
dataqsiz
elemsize
elemtype

buf

c <-4

c <- 3

c <-2

c <-1

Microscope(cs)

Total data in queue: 4

Size of the queue: 4

Buffer address: 0xc000130060

Element size: 4

Queued elements: [5 4 3 2]

Closed: ©

Element Type Address: 4870720

Send Index: @

Receive Index: @

Receive Wait list first address: 0x0
Receive Wait list last address: 0x0

Send Wait list first address: 0xc000028060
Send Wait list last address: Oxc000028060

P Read from the channel

lock

gcount
dataqsiz
elemsize
elemtype

buf

<-C

Microscope(cs)

Total data in queue: 4

Size of the queue: 4

Buffer address: 0xc000130060
Element size: 4

Queued elements: [1 4 3 2]

Closed: ©

Element Type Address: 4870720

Send Index: 1

Receive Index: 1

Receive Wait 1list first address: 0x@
Receive Wait list last address: 0x©
Send Wait list first address: 0x0
Send Wait list last address: 0x0

» More reading

closed

lock

gcount
dataqgsiz
elemsize
elemtype

buf

<-C

Microscope(cs)

Total data in queue: 3

Size of the queue: 4

Buffer address: 0xc000130060
Element size: 4

Queued elements: [1 © 3 2]

Closed: @

Element Type Address: 4870720

Send Index: 1

Receive Index: 2

Receive Wait list first address: 0x0
Receive Wait list last address: 0x0
Send Wait list first address: 0x0
Send Wait list last address: 0x0

P Wait for data

closed

lock

gcount
dataqsiz
elemsize
elemtype

buf

<-C

<-C

<-C

<-C

Microscope(cs)

Total data in queue: @

Size of the queue: 4

Buffer address: 0xcb00130060

Element size: 4

Queued elements: [0 0 0 @]

Closed: ©

Element Type Address: 4870720

Send Index: 1

Receive Index: 1

Receive Wait list first address: 0xc000194000
Receive Wait list last address: 0xc000194000
Send Wait list first address: 0x0

Send Wait list last address: 0x0

p Close channel

closed

lock

gcount
dataqgsiz
elemsize
elemtype

buf

T~
(0, false)

close(c)

Microscope(cs)

Total data in queue: ©

Size of the queue: 4

Buffer address: 0xc000130060
Element size: 4

Queued elements: [0 0 0 0]

Closed: 1

Element Type Address: 4870720

Send Index: 1

Receive Index: 1

Receive Wait list first address: 0x@©
Receive Wait list last address: 0x0
Send Wait list first address: 0x0
Send Wait list last address: 0x0

References

- The channel go code: src/runtime/chan.go
My code: http:/aithub.com/jespino/dissecting-go

https://golang.org/src/runtime/chan.go
http://github.com/jespino/dissecting-go

Thank You

X jespinog
@ JESellgle
5] jesus-espino

-

