
1

ALESSIO GREGGI
Software Engineer

Test-driven
Hardening:

Crafting Seccomp
Profiles within Test

Pipeline

2

$ whoami

Alessio Greggi

● Software Engineer @ SUSE

● Cat food opener for my cat Gino

● Enthusiastic reader and hiker

● $ cat {github,twitter}.com

alegrey91

3

CODE
COVERAGE ● A metric that can help you understand

how much of your source is tested

● Expressed as percentage

● Mostly used when writing unit-tests

4

Go Code Coverage

● First time introduced in version 1.2 for unit-tests
https://tip.golang.org/doc/go1.2#cover

● The story continues with version 1.20 with support for
integration-tests
https://go.dev/blog/integration-test-coverage

● Sensitively increased coverage percentage of projects

https://tip.golang.org/doc/go1.2#cover
https://go.dev/blog/integration-test-coverage

5

Go Code Coverage

go test -coverprofile=coverage.out -cover -v ./...

go tool cover -html=coverage.out -o coverage.html

6

SECCOMP
● Security feature in the Linux kernel

● Rules are defined in a file and referred
as a seccomp profile

● Extensively used in the Kubernetes
ecosystem (default profile)

7

Seccomp Profile as Artifact

8

TRACING
SYSCALLS:

HOW I DID IT

9

Tracing Syscalls (integration tests)

● Build the binary

● Provide scripts that check for expected results

● Run the binary along with some tracing tool (strace/perf/...)

● Collecting executed syscalls

● This allow us to collect most of the syscalls used in the
program, but not ALL the syscalls

10

Tracing Syscalls (unit tests)

● A bit more complicated

● go test command compile and run the test binary all at once
(no strace go test .)

● Compile test binary separately and then tracing it could include noise not
related to our syscalls
(no strace ./test-binary)

● In order to avoid of catching noise, we should trace only user-defined
functions within the test binary

11

HARPOON
● Use eBPF to define a tracepoint that

starts when a uprobe attached to the
function is triggered and stop once
the uretprobe return

● github.com/alegrey91/harpoon

● Uses aquasecurity/libbpfgo

12

Harpoon

harpoon capture -f main.main -- ./command

harpoon capture -f main.doSomething -- ./command

13

Harpoon

DEMO
TIME

14

RECIPE

● https://github.com/alegrey91/harpoon

● https://github.com/alegrey91/fwdctl

● testscript

https://github.com/alegrey91/harpoon
https://github.com/alegrey91/fwdctl

15

Recipe

script-based testing based
on txtar files

exec fwdctl apply --help

stdout 'Usage:'

exec fwdctl apply --file rules.yaml

fwd_exists lo tcp 3000 127.0.0.1 80

fwd_exists lo tcp 3001 127.0.0.1 80

fwd_exists lo udp 3002 127.0.0.1 80

exec fwdctl delete -n 1

16

Recipe

17

Recipe (trace-integration-test)

● Installs harpoon

● Run testscript suite

 Wrapped exec command to execute harpoon
under the hood when running integration tests
(exec_cmd) →

18

Recipe (trace-integration-test)

19

Recipe (trace-unit-test)

● Installs harpoon

● harpoon analyze

● harpoon build

20

Recipe (build-seccomp-profile)

● Final job downloads metadata from previous jobs

● Installs harpoon

● Generate profile using harpoon build

● Upload Seccomp profile as artifact

21

Recipe

22

	TALK NAME
	INTRODUCTION
	SECTION TITLE
	Section Title_clipboard0
	Slide 5
	Slide 6
	Section Title_clipboard1
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Greetings and conclusion

