
links.davideimola.dev @DavideImola

 "Open Source",

func main() {

 me := Person{

 Name: "Davide Imola",

 Role: "Software Engineer",

 Company: "RedCarbon SA",

 Community: "Schrödinger Hat",

 Location: "Verona, Italy",

 Site: "https://links.davideimola.dev",

 Interests: []string{

 "Kubernetes",

 "Go",

 "BBQ",

 "Cybersecurity",

 },

 }

}

Once upon a time…

Our hero, the Gopher, during his adventures, one day stumbled upon a mysterious land called Domain-Driven
Design.

What secrets would he uncover? What challenges would he face? And most importantly, what would he learn?

Join me (your’s today Bard) on this epic quest as we explore the world of Gophers Gone Domain-Driven!

links.davideimola.dev @DavideImola

…an epic journey began. A journey that would take us through the realms of Golang and Domain-Driven Design.

The Domain-Driven Land

Here, the Gopher learned that the key to building great
software lies in understanding the domain.

By modeling the domain accurately, we can create
software that reflects the real world, making it easier
to reason about and maintain.

links.davideimola.dev @DavideImola

A land where the domain is law, and the code is its faithful servant.

The Fabled Boundaries

Inventoryia

On the other side of the mountains lies the kingdom of Inventoryia. Here, they don’t care about who placed an
order or when it was shipped. Instead, they’re focused on managing stock and supplies—making sure items are
available, in the right quantities, and restocked as needed.

In Inventoryia, they also have a concept called “Order,” but it means something very different here! In
Inventoryia, an “Order” refers to a purchase order—the items they need to bring in from suppliers to keep their
inventory full. It has its own set of details: supplier names, quantities, costs, and delivery dates. And while they
also have IDs, their “Order ID” refers specifically to supply orders rather than customer purchases.

links.davideimola.dev @DavideImola

At the edge of the domain lie the Bounded Context, territories clearly marked to divide the land into distinct
kingdoms.

One Language, to Rule Them All

This common language is called the Ubiquitous Language - a shared vocabulary that everyone in the kingdom
understands.

From the dwarves in the mines (developers in their code) to the elves in the forests (business stakeholders in
their meetings), everyone uses the same terms and concepts to ensure clear communication and
understanding.

The language becomes part of the kingdom’s "spellbooks"! It’s used in code, documentation, and conversations,
ensuring that everyone is on the same page and reducing the risk of misunderstandings.

links.davideimola.dev @DavideImola

As any kingdom is free to use its own language, rules, and models that make sense within its borders. They
must agree on a common language when they need to communicate.

Mixing the Kingdoms

When a visitor from Orderland tries to talk to someone from Inventoryia, they might find themselves speaking
different when mentioning the word "Order ID".

Without understanding the cultural context, the Inventoryian may assume this Order ID refers to a purchase
order for stocking goods, not a customer purchase.

As you might guess, this could lead to all sorts of chaos—incorrect items being shipped, double restocks, or
even shortages, with the two kingdoms misunderstanding each other’s needs and goals.

links.davideimola.dev @DavideImola

But what happens when the kingdoms need to work together?

Boundaries and Translations

Orderland’s “Order” will only ever refer to customer purchases.

Inventoryia’s “Order” will only ever mean supply restocking.

When they need to communicate, they use translators (often known as context mapping in DDD). Translators
help convert Orderland’s “Order ID” for purchases into Inventoryia’s “Supply Order ID” for restocking, so each
kingdom can understand the other without confusion.

links.davideimola.dev @DavideImola

To keep peace and clarity, the leaders of Orderland and Inventoryia established a Bounded Context for each
kingdom, agreeing that:

The Onion Castle

The Onion Castle is a fortress of code, with layers
upon layers of protection.

Each layer represents a different part of the domain,
from the core entities at the center to the outermost
services and interfaces.

By organizing the code in this way, we can create a
clear separation of concerns and ensure that each
part of the domain is properly encapsulated.

links.davideimola.dev @DavideImola

In the heart of the Domain-Driven Land lies the Onion Castle.

The Onion Castle: Domain
At the core of the Onion Castle lies the Domain layer.

Here, we find the heart of the domain, where the core
entities and value objects reside.

No business logic or external dependencies are
allowed in this layer; it’s all about the domain and
nothing else.

links.davideimola.dev @DavideImola

type Order struct {

 ID string

 CreatedAt time.Time

 UpdatedAt time.Time

 Status string

}

func (o *Order) Ship() {

 o.Status = "Shipped"

 o.UpdatedAt = time.Now()

}

func (o *Order) Cancel() {

 o.Status = "Cancelled"

 o.UpdateAt = time.Now()

}

The Onion Castle: Application
Surrounding the Domain layer is the Application layer.

Here, we find the use cases and business logic that
drive the application.

links.davideimola.dev @DavideImola

type OrderService struct {

 orderRepo OrderRepository

}

func (s *OrderService) ShipOrder(id string) error {

 order, err := s.orderRepo.GetOrder(id)

 if err != nil {

 return err

 }

 order.Ship()

 return s.orderRepo.UpdateOrder(order)

}

The Onion Castle: Infrastructure
At the outermost layer of the Onion Castle lies the
Infrastructure layer.

Here, we find the code that interacts with external
systems, such as databases, APIs, and services.

They are passed down to the Application layer, through
dependency injection, to ensure that the domain
remains pure and free from external concerns.

links.davideimola.dev @DavideImola

type OrderHTTPService struct {

 orderSvc OrderService

}

func (s *OrderHTTPService) Ship(r *http.Request) error {

 err := s.orderSvc.Ship(r.URL.Query().Get("id"))

 if err != nil {

 return err

 }

 return nil

}

And now the magic begins!

Let’s adventure into the code!

links.davideimola.dev @DavideImola

Pros of DDD

Clearer Communication: By using a common language, everyone can understand each other better.

Better Modeling: By focusing on the domain, we can create more accurate models that reflect the real world.

Easier Maintenance: With a clear domain model, it’s easier to maintain and update the codebase.

Reduced Risk: By focusing on the domain, we can reduce the risk of misunderstandings and

miscommunications.

Scalability: DDD can help us build more scalable systems by focusing on the domain and its boundaries.

links.davideimola.dev @DavideImola

Let’s take a look at some of the benefits of Domain-Driven Design:

Cons of DDD

Complexity: DDD can be complex, especially for large systems with many domains and bounded contexts.

Learning Curve: DDD has a steep learning curve, and it can take time to fully understand and implement.

Huge Effort: DDD requires a significant effort to implement correctly, and it may not be suitable for all

projects.

links.davideimola.dev @DavideImola

Let’s take a look at some of the challenges of Domain-Driven Design:

A few suggestions from your friendly Bard

Start Small: Begin by identifying a single domain and creating a bounded context around it.

Collaborate: Work closely with domain experts and stakeholders to ensure you’re modeling the domain

accurately.

Iterate: Don’t try to model the entire domain at once. Start with a small part and iterate as you learn more!!

All the kingdoms were not built in a day.

Learn: Take the time to learn about DDD and its concepts. There are many great resources available to help

you get started.

links.davideimola.dev @DavideImola

If you’re considering embarking on your own journey into the world of Domain-Driven Design, here are a few tips
to help

Thank you for joining me today on this epic quest!

links.davideimola.dev @DavideImola

