

Games help you develop skills

About myself

I am a proud Gopher since 2018

= with experiences in other programming languages too

I work (in Go) in Amadeus

= acompany that creates applications for the travel industry
I like sharing my Go knowledge at conferences

= But on my free time I enjoy swimming, cooking, learning languages and playing board games

Today’s board game

Ticket to Ride

Today’s board game

Ticket to Ride

The board represents the United States map

Today’s board game

Ticket to Ride
The board represents the United States map

= The dots are cities/railway stations

= The lines are railway lines that connect
them

Today’s board game

Ticket to Ride

The board represents the United States map

= The dots are cities/railway stations

= The lines are railway lines that connect
them

The resources are train tokens and colored
cards that are spent to occupy railway lines

Today’s board game

Ticket to Ride

The board represents the United States map

= The dots are cities/railway stations
= The lines are railway lines that connect

them

The resources are train tokens and colored
cards that are spent to occupy railway lines

= For example to occupy the line between

Miami and Atlanta you’ll need to spend 5

trains tokens and 5 blue cards

Today’s board game

Ticket to Ride

The board represents the United States map

= The dots are cities/railway stations
= The lines are railway lines that connect

them

The resources are train tokens and colored
cards that are spent to occupy railway lines

= For example to occupy the line between
Miami and Atlanta you’ll need to spend 5

trains tokens and 5 blue cards

The objective is to get the highest score

Today’s board game

Ticket to Ride

The board represents the United States map

= The dots are cities/railway stations
= The lines are railway lines that connect

them

The resources are train tokens and colored
cards that are spent to occupy railway lines

= For example to occupy the line between
Miami and Atlanta you’ll need to spend 5

trains tokens and 5 blue cards
The objective is to get the highest score

= By occupying railway lines

= By connecting cities from objective cards

Let’s see how we can play the game in Go

Idea #1

We Go random and simplify a bit the rules
The number of player will be 2
The railway line chosen by each player will be random

Each player has unlimited resources
= which means that each player will take turns to select a line and occupy it
Each player has no objectives

= which means that the final score will be determined by which lines they occupy

Idea #1

Let’s see the code

1 package main

2

3 func main() {

4 // Collect all the railway lines

5 railwaylines, err := data.RailwayLines()

6 if err != nil { /* log and exit */ }

7

8 // create the two players

9 pl, p2 := player.NewRandom(1l), player.NewRandom(2)
10 // use a coin to select the player who takes the turn and play until all lines are occupied

var coin bool

4.2 for game.FreeRoutesAvailable(railwaylines) {

13 playRound := pl.Play()

14 if lcoin §

5 playRound = p2.Play()

16 }

117/ playRound(railwaylines)

18 // pass the turn

19 coin = lcoin
20 }
21 slog.Info("end game", "Score P1", player.Score(pl), "Score P2", player.Score(p2))

Idea #1

Let’s see the code

1 package main

2

3 func main

4 // Collect all the railway lines

5 railwaylines, err := data.RailwayLines()
6 if err != nil { /* log and exit */ }

7

8 // create the two players

9 pl, p2 := player.NewRandom(1l), player.NewRandom(2)
10

e var

12 for ites ilable

13 L

14 if

5 Play

16

117 ° Round

18

ifts]
20
21 Info Score

N
N

Score

T

Idea #1

Let’s see the code

1 package i

2

3 func main

4

5 Li

6 if =

7

8

9 NewRandom(1 NewRandom(2
10 // use a coin to select the player who takes the turn and play until all lines are occupied
L var coin bool

4.2 for game.FreeRoutesAvailable(railwaylines) {

13 playRound := pl.Play()

14 if lcoin §

5 playRound = p2.Play()

16 }

117/ playRound(railwaylines)

18 // pass the turn

19 coin = lcoin
20 }
21 slog.Info("end game", "Score P1", player.Score(pl), "Score P2", player.Score(p2))

Idea #1

Let’s see the code

1 package player

2

3 type Random struct {

- id int

5 owned []*game.TrainLine

6 3}

7 func NewRandom(id int) *Random { return &Random{id: id} }

8 func (p *Random) Play() func(g game.Board) {

9 return func(g game.Board) {

10 // select and remove a random railway line from the board
L chosenLine := game.PopRandomLine(g)

12 // add it to the owned list

13 p.owned = append(p.owned, (*game.TrainLine)(chosenLine))
14 3

U5

16 // Score sums up the value of each owned railway line
17 func (p *Random) Score() int {

18 var score int

19 for i := range p.owned {

20 score += p.owned[i].Value()
21 }

22 return score

2350k

Idea #1

Let’s see the code

package player

type Random struct {
id int
owned []*game.TrainLine

func NewRandom(id int) *Random { return &Random{id: id} }

1
2
3
4
5
6 3
7
8
9
)

NN
W N P e
)

Idea #1

Let’s see the code

O 00 N O L1 p W N P

N N NNRRRRRRR R R
W N P ® W0 NOUL D BWN P O

package player

D

type Ran

func New

func (p

dom struct

game. 1 yinLine
VRandom int) *Random return &Random
*Random) Play() func(g game.Board) {

return func(g game.Board) {

// select and remove a random railway line from the board
chosenLine := game.PopRandomLine(g)

// add it to the owned list

p.owned = append(p.owned, (*game.TrainLine)(chosenLine))

func Random) Score int
var in
for range
return

Idea #1

Let’s see the code

1 package player

2

3 type Random struct

4 hiy

5 *¥game.TrainLine

6

7 func NewRandom(id int) *Random return &Random
8 func ¥Random) Play func game . Boar

9 return func game.Board
10
ik PopRandomLine

12

13 appenc *game .TrainLine
14

115

16 // Score sums up the value of each owned railway line
17 func (p *Random) Score() int {

18 var score int

19 for i := range p.owned {
20 score += p.owned[i].Value()
21 3
22 return score

N
W
()

Idea #1

Let’s see the code

1 package player

2

3 type Random struct {

- id int

5 owned []*game.TrainLine

6 3}

7 func NewRandom(id int) *Random { return &Random{id: id} }

8 func (p *Random) Play() func(g game.Board) {

9 return func(g game.Board) {

10 // select and remove a random railway line from the board
L chosenLine := game.PopRandomLine(g)

12 // add it to the owned list

13 p.owned = append(p.owned, (*game.TrainLine)(chosenLine))
14 3

U5

16 // Score sums up the value of each owned railway line
17 func (p *Random) Score() int {

18 var score int

19 for i := range p.owned {

20 score += p.owned[i].Value()
21 }

22 return score

2350k

Demo time!

Let’s focus on the board for one second

CALCARY

" "‘ﬁv
7 /3
Al

:;)-v

- PHOENIX \ (| P

THAT LOOKS

~ LIKEAGRAPH TO ME

CALCARY

" "‘ﬁv
7 /3
Al

:;)-v

- PHOENIX \ (| P

Idea #2

Let’s model Ticket to Ride board as a graph

This is where we introduce graphs algorithms

= graphgo: my library to learn graph

algorithms in Go

= Use gonum instead of my library for

appliaction that manages graphs

m go-ticket-to-ride: the implementation of

the ticket to ride game in Go

YEAH, THAT REALLY LOOKS

Vertices, Edges and Graphs

Vertices and Edges

How we can implement them in Go and how they translate in Ticket to Ride

Vertices and Edges

How we can implement them in Go and how they translate in Ticket to Ride

// A vertex is a node that is holding data, for simplicity we will have it comparable
type Vertex[T comparable] struct {
E-T

Vertices and Edges

How we can implement them in Go and how they translate in Ticket to Ride

// A vertex is a node that is holding data, for simplicity we will have it comparable
type Vertex[T comparable] struct {
E-T
by
// An edge is a pair of vertices that can hold any property
type Edge[T comparable] struct {
X, Y *Vertex[T]
P EdgeProperty

O 00 N O L1 p W N

3
10 type EdgeProperty any

Vertices and Edges

How we can implement them in Go and how they translate in Ticket to Ride

// A Ticket to Ride example

N P © O 00 N O D W N

[N ST =

Vertices and Edges

How we can implement them in Go and how they translate in Ticket to Ride

// We create city stations as vertices of our Ticket to Ride graph
type City string

newYork := Vertex[City]{E: "New York"}

washington := Vertex[City]{E: "Washington"}

O 00 N O 1 A W N -

[
N PO

Vertices and Edges

How we can implement them in Go and how they translate in Ticket to Ride

// A Ticket to Ride example

// We create city stations as vertices of our Ticket to Ride graph
type City string

newYork := Vertex[City]{E: "New York"}

washington := Vertex[City]{E: "Washington"}

// We define a property for the Edge between city station vertices
type TrainLineProperty struct {

O 00 N O L1 D W N

Distance int

3

// We create a train line as an edge between two city station vertices
newYorkWashington := Edge[City]{X: &newYork, Y: &washington, P: TrainLineProperty{Distance: 2}}

G G =}
N R ®

Graphs

How we can implement them in Go and how they translate in Ticket to Ride

// ArcsList is graph representation of a collection of edges and vertices
type ArcsList[T comparable] struct {

\% [J*Vertex[T]

e [J*Edge[T]

(0 I S VI S N

Graphs

How we can implement them in Go and how they translate in Ticket to Ride

// A Ticket to Ride example

newYork := Vertex[City]{E: "New York'}

washington := Vertex[City]{E: "Washington'}

newYorkWashington := Edge[City]{X: &newYork, Y: washington, P: TrainLineProperty{Distance: 2}}

O 00 N O L1 p W N

=
(]

Graphs

How we can implement them in Go and how they translate in Ticket to Ride

// A Ticket to Ride example
newYork := Vertex[City]{E: "New York"}
washington := Vertex[City]{E: "Washington'}
newYorkWashington := Edge[City]{X: &newYork, Y: washington, P: TrainLineProperty{Distance: 2}}
// Keep adding cities (vertices) and railway lines (edges)
// And add all them to the board
board := ArcsList[City]{
v: []*Vertex[City]{ &newYork ,&washington /*, ...*/ }
e: []*Edge[City]{ &newYorkWashington /*, ...*/ }

O 00 N O L1 p W N

10 3

Graphs

How we can implement them in Go and how they translate in Ticket to Ride

// ArcsList is graph representation of a collection of edges and vertices
type ArcsList[T comparable] struct {

\% [J*Vertex[T]

e [J*Edge[T]

(0 I S VI S N

Graphs

How we can implement them in Go and how they translate in Ticket to Ride

\rcsList is graph representation of a collection of edges and vertices
type ArcsList[T comparable] struct {
\Y [J*Vertex[T]

e []*Edge[T]

There are other graph representations and the choice of the representation is based on memory and time
efficiency with respect to the operations done

All graph representations share a common behavior that can be captured by creating an interface

type Graph[T comparable] interface {
Vertices() []*Vertex[T]
Edges() []*Edge[T]
AddVertex(v *Vertex[T])
RemoveVertex(v *Vertex[T])
AddEdge(e *Edge[T])
RemoveEdge(e *Edge[T])

(555)

What algorithms can we use for Ticket to Ride?

Is there a path
connecting a city to
another one?

Connected vertices in a graph

The game starts with all of the cities connected
by the edges representing the railway lines

As soon as players occupy railway lines, the
correspondent edge is removed from the graph

To check if two cities are still connected by
railway lines we’ll use

= visit of a graph

= connectivity of two vertices in a graph

Is there a path connecting a city to another one?

Let’s see the code

Is there a path connecting a city to another one?

Let’s see the code

1 // GenericVisit walks the graph from a source node, visiting each node it can visit only once
2 func GenericVisit[T comparable](g Graph[T], s *Vertex[T]) *Tree[T] {
3 if !g.ContainsVertex(s) { return nil }

- s.Visit()

5 t := &Tree[T]{element: &s.E}

6 queue := []*Vertex[T]{s}

7 for len(queue) != 0 {

8 var next *Vertex[T]

9 next, queue = queue[0], queue[l:]

10 for _, v := range g.AdjacentNodes(next) {

il if v.Visited() {

12 continue

13 3

14 v.Visit()

s queue = append(queue, V)

16 parentNode := t.Find(&next.E)

17 if subtree != nil {

18 parentNode.children = append(parentNode.children, &Tree[T]{element: &v.E})
19 3
20 }

21 3

J
N

return t

N

)
(V)
(65

Is there a path connecting a city to another one?

Let’s see the code

1

2

- s.Visit()

5 t := &Tree[T]{element: &s.E}

6 queue := []*Vertex[T]{s}

7 for len(queue) != 0 {

8 var next *Vertex[T]

3 next, queue = queue[@], queue[l:]
10 for _, v := range g.AdjacentNodes(next) {
1! i
1i5
16
7
18
19

B
P ®
()

\J

N
L}

N
w

Is there a path connecting a city to another one?

Let’s see the code

1

5

6 queue := []*Vertex[T]{s}

7 for len(queue) != 0 {

9

10 for _, v := range g.AdjacentNodes(next) {
il if v.Visited() {

42 continue

i3 3

14 v.Visit()

s queue = append(queue, V)
16

i

18

19

20 3

Is there a path connecting a city to another one?

Let’s see the code

1

2

5 t := &Tree[T]{element: &s.E}

6

8

9

10 for _, v := range g.AdjacentNodes(next) {
1! i

1i5

16 parentNode := t.Find(&next.E)

ili7] if subtree != nil {

18 parentNode.children = append(parentNode.children, &Tree[T]{element: &v.E})
19 3

20 3

N
=

\J

return t

N
L}

N
w

Is there a path connecting a city to another one?

Let’s see the code

1 // GenericVisit walks the graph from a source node, visiting each node it can visit only once
2 func GenericVisit[T comparable](g Graph[T], s *Vertex[T]) *Tree[T] {
3 if !g.ContainsVertex(s) { return nil }

- s.Visit()

5 t := &Tree[T]{element: &s.E}

6 queue := []*Vertex[T]{s}

7 for len(queue) != 0 {

8 var next *Vertex[T]

9 next, queue = queue[0], queue[l:]

10 for _, v := range g.AdjacentNodes(next) {

il if v.Visited() {

12 continue

13 3

14 v.Visit()

s queue = append(queue, V)

16 parentNode := t.Find(&next.E)

17 if subtree != nil {

18 parentNode.children = append(parentNode.children, &Tree[T]{element: &v.E})
19 3
20 }

21 3

J
N

return t

N

)
(V)
(65

Is there a path connecting a city to another one?

Let’s see the code

// Connected verifies that the vertices x and y are connected in the graph g
// by visiting g using x as a source and checking that the output tree contains the vertex v
func Connected[T comparable](g Graph[T], x, y *Vertex[T]) bool {

return GenericVisit(g, x).Find(&y.E) != nil

i W

by

Of all the routes
connecting two cities,
which one is the
shortest?

Shortest path algorithm

If two cities are connected, there is at least one
route between them

To check the shortest route between two cities
we’ll use the Bellman-Ford algorithm

Bellman-Ford algorithm for the shortest path

Let’s see the code

1 func BellmanFordDistances[T comparable](g Graph[T], s *Vertex[T]) map[*Vertex[T]]*Distance[T] {

2 d := make(map[*graph.Vertex[T]]*Distance[T]) // type Distance[T comparable] struct { v, u *Vertex[T]; d int }

3 for _, v := range g.Vertices() {

4 d[v] = &Distance[T]{v: s, u: v}

5 if v 1= s {

6 d[v].d = math.MaxInt

7 }

8 }

9 canRelax := (x, y *graph.Vertex[T], w Weighter) bool { return d[x].d+w.Weight() < d[y].d && d[x].d+w.Weight() > 0 }
10 relax = (x, y *graph.Vertex[T], w Weighter) { d[y].setDistance(w.Weight() + d[x].d)}
il for range g.Vertices() {

12 for _, e := range g.Edges() {

13 w := e.P.(Weighter) // type Weighter interface{ Weight() int }
14 switch {

5 case canRelax(e.X, e.Y, w):

16 relax(e.X, e.Y, w)

i case canRelax(e.Y, e.X, w):

18 relax(e.Y, e.X, w)

19 3

20 }

o1 3

J
N

return d

N

)
(V)
(65

Bellman-Ford algorithm for the shortest path

Let’s see the code

d := make(map[*graph.Vertex[T]]*Distance[T]) // type Distance[T comparable] struct { v, u *Vertex[T]; d int }
for _, v := range g.Vertices() {
d[v] = &Distance[T]{v: s, u: v}
if v I= s {
d[v].d = math.MaxInt
3

O 00 NN O n p W N B

RGN
N P ®

N

i el v
O U1 U

J

N R
O O 00 ~

N N

)
=

J

N
I

N
W

Bellman-Ford algorithm for the shortest path

Let’s see the code

1

2

3

4

5 1

6

%

8

9 canRelax := (x, y *graph.Vertex[T], w Weighter) bool { return d[x].d+w.Weight() < d[y].d && d[x].d+w.Weight() > 0 }
10 relax = (x, y *graph.Vertex[T], w Weighter) { d[y].setDistance(w.Weight() + d[x].d)}
il for range g.Vertices() {

12 for _, e := range g.Edges() {

13 w := e.P.(Weighter) // type Weighter interface{ Weight() int }

14 switch {

5 case canRelax(e.X, e.Y, w):

16 relax(e.X, e.Y, w)

i case canRelax(e.Y, e.X, w):

18 relax(e.Y, e.X, w)

19 3
20 }

21 3

29

9 4 4
L0

Bellman-Ford algorithm for the shortest path

Let’s see the code

1 func BellmanFordDistances[T comparable](g Graph[T], s *Vertex[T]) map[*Vertex[T]]*Distance[T] {

2 d := make(map[*graph.Vertex[T]]*Distance[T]) // type Distance[T comparable] struct { v, u *Vertex[T]; d int }

3 for _, v := range g.Vertices() {

4 d[v] = &Distance[T]{v: s, u: v}

5 if v 1= s {

6 d[v].d = math.MaxInt

7 }

8 }

9 canRelax := (x, y *graph.Vertex[T], w Weighter) bool { return d[x].d+w.Weight() < d[y].d && d[x].d+w.Weight() > 0 }
10 relax = (x, y *graph.Vertex[T], w Weighter) { d[y].setDistance(w.Weight() + d[x].d)}
il for range g.Vertices() {

12 for _, e := range g.Edges() {

13 w := e.P.(Weighter) // type Weighter interface{ Weight() int }
14 switch {

5 case canRelax(e.X, e.Y, w):

16 relax(e.X, e.Y, w)

i case canRelax(e.Y, e.X, w):

18 relax(e.Y, e.X, w)

19 3

20 }

o1 3

J
N

return d

N

)
(V)
(65

Bellman-Ford algorithm for the shortest path

Let’s see the code

1 func Shortest[T comparable](g graph.Graph[T], d map[*graph.Vertex[T]]*Distance[T], x, y *graph.Vertex[T]) []*graph.Vertex[T] {
2 if len(g.Vertices()) < 2 { return nil }

3 isShortestDist := func(u, v *graph.Vertex[T], w Weighter) bool { return d[u].d+w.Weight() == d[v].d }
- isConnectingEdge := func(u, v *graph.Vertex[T], e *graph.Edge[T]) bool { return (e.X == u && e.Y ==v) || (e. X ==v && e.Y
5 path := [J*graph.Vertex[T]{y}

6 V=

7 for v I= x {

8 neighbourSearch:

9 for _, u := range g.AdjacentNodes(v) {

10 for _, edge := range g.Edges() {

il if !isConnectingEdge(u, v, edge) {

12 continue

3 }

14 if !isShortestDist(u, v, edge.P.(Weighter)) {

s continue

16 3

ili7] path = append([]*graph.Vertex[T]{u}, path...)

18 vV =u

19 break neighbourSearch
20 3
21 }
22 }

23 return path

Bellman-Ford algorithm for the shortest path

Let’s see the code

path := [J*graph.Vertex[T]{y}

vV i=y
for v I= x {

return path

Bellman-Ford algorithm for the shortest path

Let’s see the code

1

2 i : retur

3 isShortestDist := func(u, v *graph.Vertex[T], w Weighter) bool { return d[u].d+w.Weight() == d[v].d }
- isConnectingEdge := func(u, v *graph.Vertex[T], e *graph.Edge[T]) bool { return (e.X == u &k e.Y ==v) || (e. X ==v && e.Y
5

6

8 neighbourSearch:

9 for _, u := range g.AdjacentNodes(v) {

10 for _, edge := range g.Edges() {

il if !isConnectingEdge(u, v, edge) {

12 continue

3 }

14 if !isShortestDist(u, v, edge.P.(Weighter)) {

5 continue

16 3

ili7] path = append([]*graph.Vertex[T]{u}, path...)

18 vV =u

19 break neighbourSearch
20 3
21 }

Bellman-Ford algorithm for the shortest path

Let’s see the code

1 func Shortest[T comparable](g graph.Graph[T], d map[*graph.Vertex[T]]*Distance[T], x, y *graph.Vertex[T]) []*graph.Vertex[T] {
2 if len(g.Vertices()) < 2 { return nil }

3 isShortestDist := func(u, v *graph.Vertex[T], w Weighter) bool { return d[u].d+w.Weight() == d[v].d }
- isConnectingEdge := func(u, v *graph.Vertex[T], e *graph.Edge[T]) bool { return (e.X == u && e.Y ==v) || (e. X ==v && e.Y
5 path := [J*graph.Vertex[T]{y}

6 V=

7 for v I= x {

8 neighbourSearch:

9 for _, u := range g.AdjacentNodes(v) {

10 for _, edge := range g.Edges() {

il if !isConnectingEdge(u, v, edge) {

12 continue

3 }

14 if !isShortestDist(u, v, edge.P.(Weighter)) {

s continue

16 3

ili7] path = append([]*graph.Vertex[T]{u}, path...)

18 vV =u

19 break neighbourSearch
20 3
21 }
22 }

23 return path

Go’s simplicity vs the algorithms’ complexity

Back to Idea #2

Updated rules

= each player now has 3 objectives
= which means the railway line chosen by each player will be made by looking at the shortest path

available for the routes on their objective list

Back to Idea #2

Let’s see the code

1 package main

2

3 func main() {

4 // Collect all the railway lines

5 railwaylines, err := data.RailwayLines()

6 if err != nil { /* log and exit */ }

7 // Collect all the tickets/objectives

8 tickets, err := data.Tickets()

9 if err != nil { /* log and exit */ }

10

11 // create the two players

12 pl, p2 := player.NewWithTickets(1l, game.GetTickets(3, &tickets)),player.NewWithTickets(2, game.GetTickets(3, &tickets))
13 // use a coin to select the player who takes the turn and play until all lines are occupied
14 var coin bool

5 for game.FreeRoutesAvailable(railwaylines) {
16 play := pl.Play()

17 if l!coin {

18 play = p2.Play()

19 3

20 play(railwaylines)

21 // pass the turn

coin = !coin

Back to Idea #2

Let’s see the code

1 package

2

3 func

4

5 i
6 e = ni

7 // Collect all the tickets/objectives
8 tickets, err := data.Tickets()

9 if err != nil { /* log and exit */ }
10

11 // create the two players
12 pl, p2 := player.NewWithTickets(1l, game.GetTickets(3, &tickets)),player.NewWithTickets(2, game.GetTickets(3, &tickets))
13

14 var

s for

16

17 i

18

19
20

21
22

23

Back to Idea #2

Let’s see the code

1 package player

2

3 type WithTickets struct {

- id int

5 ownedLines game.Board

6 tickets [Jgame.Ticket

7}

8 func NewWithTickets(id int, t []game.Ticket) *WithTickets {
9 return &WithTickets{id: id, tickets: t, ownedlLines: graph.NewUndirected[game.City](graph.ArcsListType)}
10 3}

11 func (p *Random) Play() func(g game.Board) {

42 randomSelection := func(b game.Board) {

13 // same as the random player but storing ownedLines in the graph
14 3

s shortestPath := func(b game.Board) { //...

16 3

17

18 if !p.HasTicketsToComplete() {

19 return randomSelection
20 }

21 return shortestPath

22

Back to Idea #2

Let’s see the code

1 package
; <
3 type WithTickets struct {
- id int
5 ownedLines game.Board
6 tickets []game.Ticket
7}
8 func NewWithTickets(id int, t []game.Ticket) *WithTickets {
9 return &WithTickets{id: id, tickets: t, ownedlLines: graph.NewUndirected[game.City](graph.ArcsListType)}
10 3}
11 func func
42 C
i3
14
15 func
16
17
18 if
19 retur
20
2 retur
22

Back to Idea #2

Let’s see the code

1 package

2

3 cype 1Tl E sStruct

4

5

6

7

8 fun

9 return

10

11 func (p *Random) Play() func(g game.Board) {
42 randomSelection := func(b game.Board) {
13 // same as the random player but storing ownedLines in the graph
14 3

s shortestPath := func(b game.Board) { //...
16 3

17

18 if !p.HasTicketsToComplete() {

19 return randomSelection

20 }

21 return shortestPath

22

Back to Idea #2

Let’s see the code

1 package player

2

3 type WithTickets struct {

- id int

5 ownedLines game.Board

6 tickets [Jgame.Ticket

7}

8 func NewWithTickets(id int, t []game.Ticket) *WithTickets {
9 return &WithTickets{id: id, tickets: t, ownedlLines: graph.NewUndirected[game.City](graph.ArcsListType)}
10 3}

11 func (p *Random) Play() func(g game.Board) {

42 randomSelection := func(b game.Board) {

13 // same as the random player but storing ownedLines in the graph
14 3

s shortestPath := func(b game.Board) { //...

16 3

17

18 if !p.HasTicketsToComplete() {

19 return randomSelection
20 }

21 return shortestPath

22

Back to Idea #2

Let’s see the code

1 shortestPath := func(b game.Board) {

2 localBoard := graph.Copy(b)

3 updatedBoard:

- for len(localBoard.Edges()) > 0 {

5 // Part 1: keep the door open to random selection if there are no available tickets

6 ticket, err := p.NextAvailableTicket()

7 if err != nil { return randomSelection(localBoard) }

8

9 // Part 2: if there is no path between the two cities, the ticket is done and you move to the next one
10 if !visit.ExistsPath(localBoard, ticket.X, ticket.Y) { ticket.Done = true; ticket.Ok = false; continue }
11
42 // Part 3: if there is a path between the two cities in the objective select the shortest path and take the first segme
13 shortest := path.Shortest(localBoard, path.BellmanFordDist(localBoard, ticket.X), ticket.X, ticket.Y)
14 fortat==—H0: N1 i< illen@shortest) =15 G+t g
5 chosenLine := game.FindLineFunc(game.ShortestSegment(ticket, shortest[i], shortest[i+l1]), localBoard)
16 //
i/ 3
18 3

19 return

Back to Idea #2

Let’s see the code

1 shortestPath := func(b game.Board) {

2 1/ :

3 // Part 3: if there is a path between the two cities in the objective select the shortest path and take the first segment a
- shortest := path.Shortest(localBoard, path.BellmanFordDist(localBoard, ticket.X), ticket.X, ticket.Y)
5 for'i :=10; i < len(shortest)-1: i+t {

6 chosenLine := game.FindLineFunc(game.ShortestSegment(ticket, shortest[i], shortest[i+1]), localBoard)
7 // Is the line owned by me?

8 owned := p.ownedLines.ContainsEdge(chosenLineEdge)

9 if owned { continue }
10 // Is the line owned by someone else?

occupiedNotOwned := chosenlLine.P.(*game.TrainLineProperty).Occupied

12 if occupiedNotOwned {

13 localBoard.RemoveEdge(chosenLineEdge); continue updatedBoard;

14 3

5 // Occupy the selected line

16 chosenLine.P.(*game.TrainLineProperty).0Occupy()

i p.ownedLines.AddVertex(chosenLine.X)

18 p.ownedLines.AddVertex(chosenLine.Y)

19 p.ownedLines.AddEdge(chosenLineEdge)
20 // Check if ticket is completed after taking the line
21 if visit.ExistsPath(p.ownedLines, tX, tY) {

ticket.Done, ticket.Ok = true, true

Demo time!

Conclusions

Can Go take the Ticket to Ride? Yes!

Conclusions

Can Go take the Ticket to Ride? Yes!

Games are a good opportunity to practise and
learn new skills

Conclusions

Can Go take the Ticket to Ride? Yes!

Games are a good opportunity to practise and
learn new skills

= About Go and beyond

Conclusions

Can Go take the Ticket to Ride? Yes!

Games are a good opportunity to practise and
learn new skills

= About Go and beyond

Go makes it easy to translate pseudo-code in
actual code and to implement algorithms

Conclusions

Can Go take the Ticket to Ride? Yes!

Games are a good opportunity to practise and
learn new skills

= About Go and beyond

Go makes it easy to translate pseudo-code in
actual code and to implement algorithms

= No matter how complex the algorithm is

Conclusions

Can Go take the Ticket to Ride? Yes!

Games are a good opportunity to practise and
learn new skills

= About Go and beyond

Go makes it easy to translate pseudo-code in
actual code and to implement algorithms

= No matter how complex the algorithm is

Take advantage of the simplicity that Go
brings you

And you’ll be able to create awesome things with Go!

Thank you very much!

Michele Caci

