
Swiss Knife for Go
Debugging with
VSCode
Ivan ossan Pesenti
Software Engineer
Golab 2024

About Me
❏ Name: Ivan Pesenti (AKA ossan)

❏ Age: 29

❏ Country: Italy

❏ Company: CrowdStrike

❏ Award: Docker Captain

❏ Engagements: speaker, mentor,

technical writer, course author

❏ Hobby: anime, tattoos, football

My Humble Goals

Stop These ❌

No need to waste time until we have to debug anything.

I’m switching to Goland since VSCode doesn’t allow me to properly debug my
code.

Let’s add some more troubleshooting log entries.

Useless & Time consuming

Goland

fmt.Println(“”)

Mission Players 🎮

The Integrated Development
Environment (IDE).

The programming language.

Delve

VSCode Go

The Debug Adapter Protocol. The debugger.

DAP

Why Debugging?

01

Why It’s Relevant

Get more familiar with the codebase you’re working with. Follow execution paths
to find out functions in the stack trace.

Find out where bugs happen and fix them. Allow you to slow down the code
execution in specific parts to dig into them.

Inspect variables’ values or complex objects and how they change while code
execution.

Codebase Knowledge

Detect Bugs

Inspection

What
Debugging?

02

All For One, and One For All! 🤝
01

0504

02

06

03

Unit Test
Functions

Local running
processes

Remote running
processes

Integration
Test Functions

Any piece of code
in your mind

Command Line
Interface Apps

Debug Adapter
Protocol

03

Debug Adapter Protocol 📄

❏ Standard on how IDEs/tools communicate with concrete debuggers

❏ Utopian that concrete debuggers adapt to DAP (or not in the near future)

❏ An intermediate component will manage that

❏ Reduce effort to support debugging in new IDEs

❏ Allow to implement a generic debugger

Underlying Infrastructure 🔋

Delve

03

In a Nutshell 🌰

❏ The debugger for Go programs (written in Go)

❏ Part of the Go Tools

❏ Listen to commands through a CLI interface

❏ Can be also installed (and used) outside of Visual Studio Code

Delve Key Features ⚓

Customize the debug
behavior.

Run and debug your
programs.

Debug Session

LaunchConfigure

Handle the debug
session.

Normal, conditional,
function, and logpoint.

Both to a local process
or to a remote one.

Variables’ values and
stack trace calls.

Attach

Breakpoints Inspection

Visual Studio
Code

04

Why is Worth Using?

❏ Free

❏ open-source

❏ Completely customizable (appearances, extensions, shortcuts, and so on)

❏ Fits well for Go programs

❏ One-tool-for-all solution

Built-in Variables (not exhaustive)

Variable Value

${workspaceFolder} The path of the folder opened in VS Code

${file} The current opened file

${fileDirName} The current opened file folder path

${cwd}
Current Working Directory for the
debugger

The settings.json File

❏ Home for all VS Code settings

❏ Every setting in User Preferences (GUI) is read from this file

❏ Editor and terminal behavior, themes, extensions, keyboard shortcuts

❏ Boost developers productivity and consistency

General Delve Config Setting 🔧

The launch.json File🎭

❏ Selectable in Run View menu

❏ Holds a specific configuration
to test, debug, launch, etc. a
specific piece of code

❏ Different arguments for each
scenario

❏ Prepare the input for the
Delve tool

The launch.json File Setup

Warm-Up 🐉

Debug StdIn ⏪

Global Variables 📦

In Action 🚀

Debug Console REPL 💻

Well… Let’s Practice!

A Sample Unit Test 💉

Conditionals Breakpoints ❓

Debug With launch.json

The Integration Test Suite ⚙

❌ 🐛 It !

Attach to Local Process 🎀

Compound Configuration ⚡

The Final Challenge 🪨

Docker Container 🐋

Let’s Setup ⚒

Thanks

05

t.ly/pDNHV

QR code and Link to the repository

