
WATERMILL
THE MISSING STANDARD LIBRARY FOR EVENT-DRIVEN APPLICATIONS

ROBERT
LASZCZAK
CO-FOUNDER OF

ROBERT
LASZCZAK
CO-FOUNDER OF

CREATOR OF Watermill

A TALE ABOUT
WATERMILL…

“HOW I CAN MAKE
BUILDING
EVENT-DRIVEN
SERVICES AS
SIMPLE AS HTTP
API?”

+7K
GITHUB STARS

+100
CONTRIBUTORS

12
OFFICIALLY

SUPPORTED PUB/SUBS

BoltDB

BoltDB

AND MOST
IMPORTANTLY…

•first commit: 6.5 years ago

IT WASN’T AN
OVERNIGHT SUCCESS

•first commit: 6.5 years ago

•v0.1.0 - 6 months after the first commit

IT WASN’T AN
OVERNIGHT SUCCESS

•first commit: 6.5 years ago

•v0.1.0 - 6 months after the first commit

IT WASN’T AN
OVERNIGHT SUCCESS

•first commit: 6.5 years ago

•v0.1.0 - 6 months after the first commit

•v1.0 - 500 days after the first commit

IT WASN’T AN
OVERNIGHT SUCCESS

WHAT MADE
WATERMILL

SUCCESSFUL?

WHAT PROBLEM
WATERMILL SOLVES?

PROBLEMS?

CONSUMER GROUPS

PARTITIONING

MESSAGE ORDERING

AT-LAST-ONCE DELIVERY

MESSAGE ACK AND NACK

POISON QUEUE

NOT LOSING ANY MESSAGE

CONNECTION POOLING

HANDLING TLS

HTTP PROTOCOL

TCP PROTOCOL

DNS RESOLUTION

DEALING WITH PARTIAL READS

HANDLING NETWORK FAILURES

AND IT’S HOW…

FOCUS ON THE
 PROBLEM

•MAKE BUILDING OF MESSAGE/EVENT-BASED SERVICES AS SIMPLE

(OR EVEN SIMPLER) THAN HTTP API

GOALS OF GODDD

•MAKE BUILDING OF MESSAGE/EVENT-BASED SERVICES AS SIMPLE

(OR EVEN SIMPLER) THAN HTTP API

•EASY TO ADD PUB/SUB IMPLEMENTATION

GOALS OF GODDD

•MAKE BUILDING OF MESSAGE/EVENT-BASED SERVICES AS SIMPLE

(OR EVEN SIMPLER) THAN HTTP API

•EASY TO ADD PUB/SUB IMPLEMENTATION

•IT SHOULD BE AN EXTENSIBLE LIBRARY

GOALS OF GODDD

•WRITE PROGRAMS THAT DO ONE THING AND DO IT WELL.

•WRITE PROGRAMS TO WORK TOGETHER.

•WRITE PROGRAMS TO HANDLE TEXT STREAMS MESSAGES,

BECAUSE THAT IS A UNIVERSAL INTERFACE.

UNIX PHILOSOPHY

•WRITE PROGRAMS THAT DO ONE THING AND DO IT WELL.

•WRITE PROGRAMS TO WORK TOGETHER.

•WRITE PROGRAMS TO HANDLE TEXT STREAMS MESSAGES,

BECAUSE THAT IS A UNIVERSAL INTERFACE.

UNIX PHILOSOPHY (1978)

type Message struct {
 UUID string

 Metadata map[string]string

 Payload []byte
}

type Publisher interface {

 Publish(topic string, messages ...*Message) error

 Close() error

}

type Publisher interface {

 Publish(topic string, messages ...*Message) error

 Close() error

}

type Subscriber interface {

Subscribe(

ctx context.Context,

topic string,

) (<-chan *Message, error)

 Close() error

}

type HandlerFunc func(msg *Message) ([]*Message, error)

• TIMEOUT

• CORRELATION

• LOGGING

• POISON QUEUE

• RETRIES

MIDDLEWARES
• THROTTLING

• CIRCUIT BREAKER

• DUPLICATOR

• RANDOM FAIL

• WRITE YOUR OWN!

type Message struct {
 UUID string

 Metadata map[string]string

 Payload []byte
}

type OrderPlaced struct {

OrderID uuid.UUID `json:”order_id”

}

cqrs.NewEventHandler(

“send_order”,

func(ctx context.Context, op *OrderPlaced) error {

return orders.SendOrder(op.OrderID)

},

)

event/command driven
services

event/command driven
servicesstream processing

event/command driven
servicesstream processing

build your own library

GOING TOWARDS
v1.0

TESTING STRATEGY

• MAKE LONG-TERM DEVELOPMENT EASIER
TESTING STRATEGY

• MAKE LONG-TERM DEVELOPMENT EASIER
• ADDING NEW PUB/SUB EASILY

TESTING STRATEGY

• MAKE LONG-TERM DEVELOPMENT EASIER
• ADDING NEW PUB/SUB EASILY
• DO NOT RE-IMPLEMENT ALL EDGE CASES

TESTING STRATEGY

type Publisher interface {

 Publish(topic string, messages ...*Message) error

 Close() error

}

type Subscriber interface {

Subscribe(

ctx context.Context,

topic string,

) (<-chan *Message, error)

 Close() error

}

func TestPublishSubscribe(t *testing.T) {
 features := tests.Features{
 ConsumerGroups: true,
 ExactlyOnceDelivery: false,
 GuaranteedOrder: false,
 Persistent: true,
 }

 tests.TestPubSub(
 t,
 features,
 createPubSub,
 createPubSubWithConsumerGrup,
)
}

ESTABLISH PUBLIC INTERFACES

• NO V2 PLANNED- NO BREAKING CHANGES
WITHIN MAJOR

ESTABLISH PUBLIC INTERFACES

• NO V2 PLANNED- NO BREAKING CHANGES
WITHIN MAJOR

• ASK OTHERS FOR FEEDBACK AND
DOGFOOD

ESTABLISH PUBLIC INTERFACES

LESSONS LEARNED?

#1 RULE OF LIVE CODING

#1 RULE OF LIVE CODING

DON’T DO LIVE CODING

•REQUEST/REPLY SUPPORT

•FORWARDER COMPONENT (OUTBOX PATTERN)

•MORE PUB/SUBS (AWS, POSTGRES QUEUE)

•OUT-OF-THE-BOX SSE SUPPORT

•POISON QUEUE CLI

•DOCS…

SOME FEATURES SINCE V1.0

THANKS FOR ALL
CONTRIBUTORS

❤

❤
❤

THANKS!
https://tdl.is/golab24/

