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immudb: 
The Immutable Database

● immudb is a database with built-in 
cryptographic proof and verification

● It operates as a key-value store, SQL or 
document oriented database.

● Engineered for scalability, immudb can 
handle millions of transactions per second.
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Project History
immudb: the Immutable Database

● Started in 2020

● 4785 commits, ~70 contributors

● 47 releases (latest version is v1.9.5)

● ~146k lines of code (Golang only)
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Applications of an immutable database
immudb: the Immutable Database
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Immutable append only logs
immudb: the Immutable Database

● An append-only log file is a data structure where new entries are added 
sequentially at the end, and existing entries cannot be modified or deleted.
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immudb: the Merkle Tree
immudb: the Immutable Database
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The inclusion proof
immudb: the Immutable Database

● It proofs a given leaf’s membership in the tree
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The consistency proof
immudb: the Immutable Database

● It proofs that a merkle tree (root hash) is a superset of a 
previous merkle tree
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How immutability is proved to clients?
immudb: the Immutable Database

1. Root Hash Tracking:  clients retain the most recent known 
Merkle tree root hash H;

2. Proofs for Integrity: when fetching or setting a new 
key-value entry E, clients can optionally request:

a. a consistency proof between H and the latest database 
state H’;

b. an inclusion proof confirming that E belongs to the 
Merkle tree represented by the current root hash H’.
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Why Golang?

● Extensive standard library, including 
cryptographic support

● Native concurrency features (goroutines, 
channels and more)

● Successful examples of adoption in large 
database and storage projects (CockroachDB, 
BadgerDB)

● Tools for reducing GC load: sync.Pool, unsafe 
package, etc.
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Rich Standard Library
Why Golang for immudb

func (t *HTree) BuildWith(digests [][sha256.Size]byte) error {
       ...

b := [1 + 2*sha256.Size]byte{NodePrefix}
for w > 1 {

wn := 0
for i := 0; i+1 < w; i += 2 {

copy(b[1:], t.levels[l][i][:])
copy(b[1+sha256.Size:], t.levels[l][i+1][:])
t.levels[l+1][wn] = sha256.Sum256(b[:])
wn++

}
if w%2 == 1 {

t.levels[l+1][wn] = t.levels[l][w-1]
wn++

}
l++
w = wn

}
...

}
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Goroutines
Why Golang for immudb

resCh := make(chan appendableResult)
go func() {

offsets, err := s.appendValuesToAnyVLog()
if err != nil {

resCh <- appendableResult{nil, err}
}
resCh <- appendableResult{offsets, nil}

}()

err = tx.BuildHashTree()
...
valuesRes := <-resCh
...
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Channels

● Channels enable safe communication between 
goroutines, avoiding explicit locks and simplifying 
concurrent code.

● For simple local data sharing, channels might add 
unnecessary complexity, as opposed to direct data 
passing or using mutexes.

● Circular waiting patterns, where goroutines are blocked 
waiting on each other, can lead to deadlocks.

Why Golang for immudb
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Channels in the WatchersHub component
Why Golang for immudb

type WatchersHub struct {
...
value uint64
...

}

func (s *WatchersHub) WaitFor(ctx context.Context, v uint64) error {
...

}

func (s *WatchersHub) Advance(v uint64) error {
...

}
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WatchersHub usage
Why Golang for immudb

func (s *Store) commit(ctx context.Context, …) error {

   hdr, err := s.precommit(ctx, …)

   ...

   // note: durability is only ensured when sync mode is enabled

   err := s.commitWHub.WaitFor(ctx, hdr.TxID)

   ...

}
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WatchersHub: implementation
Why Golang for immudb

type WatchersHub struct {
wPoints map[uint64]waitPoint
value uint64
...
mtx sync.Mutex

}

type waitPoint struct {

v uint64

ch chan struct{}

count int

}
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WatchersHub: the WaitFor method
Why Golang for immudb

func (w *WatchersHub) WaitFor(ctx context.Context, v uint64) error {
if w.value >= v {

return nil
}

   ...
wp, waiting := w.wPoints[v]
if !waiting {

wp = waitingPoint{v: v, ch: make(chan struct{})}
}
...
cancelled := false
select {

case <-wp.ch:
break

case <-ctx.Done():
cancelled = true

}
...

}
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WatchersHub: the Advance method
Why Golang for immudb

func (w *WatchersHub) Advance(v uint64) error {
   ...

for i := s.value+1; i <= v; i++ {
wp, waiting := w.wPoints[i]
if waiting {

close(wp.ch)
...
delete(w.wPoints, i)

}
}
w.value = v
...

}
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The Garbage Collector

● Use sync.Pool to reduce the number 
of total allocations

● Prefer value types over pointers when 
feasible

● Eliminate unnecessary copying
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The mark and sweep algorithm

● It walks the program’s object graph to identify objects 
that are in use by the program

● It uses a two phase technique, called 
mark-and-sweep.

The Garbage Collector
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The GC Cycle: mark phase
The Garbage Collector
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The GC Cycle: sweep phase
The Garbage Collector
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The GC Cycle

● GC cycles pause time increases as we allocate more 
and more objects

● It is not affected by the total amount of bytes allocated

The Garbage Collector
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Reducing the number of allocations with sync.Pool
The Garbage Collector

type Row struct {
    ...
}

var rowsPool = sync.Pool {
New: func() any {

return &sql.Row{...}
}

}

s := rowsPool.Get().(*sql.Row)
s.reset()

... // do something with r

rowsPool.Put(s) // release r back to the pool
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Prefer values to pointers
The Garbage Collector

type MyStruct struct {

Field1 *uint64

Field2 *Object

...

}

type MyStruct struct {
Field1 uint64
Field2 Object
...

}
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Cache
The Garbage Collector

type cacheShard struct {

offsets map[string]uint32

buf []byte

...

}

func (c *cacheShard) Put(key, value []byte) error {

...

}

func (c *cacheShard) Get(key []byte) ([]byte, error) {

...

}
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unsafe operations
The Garbage Collector

func BytesToString(buf []byte) error {
return unsafe.String(unsafe.SliceData(buf), len(buf))

}
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Conclusions

● Golang simplifies complex tasks, from 
cryptography to concurrency, with 
minimal dependencies.

● While GC can introduce delays, there 
are several options to minimize its 
impact.

● Projects like immudb showcase its 
effectiveness in real-world, 
performance critical applications.
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Thank You 
For Your Time!


