Stefano Scafiti

Lead Software Engineer at Codenotary

Exploring Go’'s Prowess in
Immersive Database
Development: immudb as
a Case Study

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

AGENDA

immudb: The Immutable Database
Why Golang?

The Garbage Collector

Conclusion

PN

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

e immudb is a database with built-in
cryptographic proof and verification

e It operates as a key-value store, SQL or
document oriented database.

e Engineered for scalability, immudb can
handle millions of transactions per second.

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

immudb: the Immutable Database

Project History

® Started in 2020
® 4785 commits, ~70 contributors
® 47 releases (latest version is v1.9.5)

® ~146k lines of code (Golang only)

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

8.0k

6.0k

GitHub Stars

2.0k

® codenotary/immudb

@ Star History

2020

2021

2022
Date

2023

2024
star—history.com
& Y

immudb: the Immutable Database

Applications of an immutable database

CUSTOMER FINANCE OPERATION
SYSTEM OF SYSTEM OF g:_? :ggg% AL SYSTEM
RECORD RECORD OF RECORD
WORKFRONT/

SALESFORCE SAP WORKDAY SERVICENOW

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

immudb: the Immutable Database

Immutable append only logs

e An append-only log file is a data structure where new entries are added
sequentially at the end, and existing entries cannot be modified or deleted.

| IO IITTT u]/\

Append Only

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

immudb: the Immutable Database

immudb: the Merkle Tree

® C8 (O8 X

t3

]

L&

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

immudb: the Immutable Database

The inclusion proof

e |t proofs a given leaf’s membership in the tree

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

immudb: the Immutable Database

The consistency proof

e It proofs that a merkle tree (root hash) is a superset of a

previous merkle tree
Root Proof From Hagcp to Hagepera = [Ha, Herl

Hagcp
Hera

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

immudb: the Immutable Database

How immutability is proved to clients?

1. Root Hash Tracking: clients retain the most recent known
Merkle tree root hash Hi,

2. Proofs for Integrity: when fetching or setting a new
key-value entry E, clients can optionally request:

a. a consistency proof between H and the latest database
state H’,

b. an inclusion proof confirming that E belongs to the
Merkle tree represented by the current root hash H.

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024 10

e Extensive standard library, including
cryptographic support

e Native concurrency features (goroutines,
channels and more)

e Successful examples of adoption in large
database and storage projects (CockroachDB,
BadgerDB)

e Tools for reducing GC load: sync.Pool, unsafe
package, etc.

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

1

Why Golang for immudb
Rich Standard Library

func (t *HTree) BuildWith (digests [][sha256.Size]byte) error {

b := [1 + 2*sha256.Size]byte{NodePrefix}

for w > 1 {
wn := 0
for i :=0; i+l < w; i += 2 {

copy(b[1:], t.levels[1l][i][:])

copy (b[1l+sha256.Size:], t.levels[1][i+1][:])
t.levels[1l+1l] [wn] = sha256.Sum256(b[:])
wn++

if w2 == 1 {
t.levels[1l+1] [wn] = t.levels[1l] [w-1]
wn++

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

12

Why Golang for immudb
Goroutines

resCh := make(chan appendableResult)
go func() {
offsets, err := s.appendValuesToAnyVLog ()
if err '= nil {
resCh <- appendableResult{nil, err}

}
resCh <- appendableResult{offsets, nil}

}(O)

err = tx.BuildHashTree ()

valuesRes := <-resCh

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

13

Why Golang for immudb
Channels

e Channels enable safe communication between
goroutines, avoiding explicit locks and simplifying
concurrent code.

e For simple local data sharing, channels might add
unnecessary complexity, as opposed to direct data
passing or using mutexes.

e Circular waiting patterns, where goroutines are blocked
waiting on each other, can lead to deadlocks.

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024 14

Why Golang for immudb
Channels in the WatchersHub component

type WatchersHub struct {

value uinté64

func (s *WatchersHub) WaitFor (ctx context.Context, v uint64) error {

func (s *WatchersHub) Advance (v uint64) error ({

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

15

Why Golang for immudb
WatchersHub usage

func (s *Store) commit (ctx context.Context, ..) error {

hdr, err := s.precommit (ctx, ..)

// note: durability is only ensured when sync mode is enabled
err := s.commitWHub.WaitFor (ctx, hdr.TxID)

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

16

Why Golang for immudb
WatchersHub: implementation

type WatchersHub struct { type waitPoint struct {

wPoints map[uint64]waitPoint v uinté64

value uint64 ch chan struct{}
count int

mtx sync.Mutex }

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

Why Golang for immudb
WatchersHub: the WaitFor method

func (w *WatchersHub) WaitFor (ctx context.Context, v uint64) error {
if w.value >= v {

return nil

wp, waiting := w.wPoints|[v]
if 'waiting {

wp = waitingPoint{v: v, ch: make(chan struct{})}

cancelled := false
select {
case <-wp.ch:
break
case <-ctx.Done():
cancelled = true

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

Why Golang for immudb
WatchersHub: the Advance method

func (w *WatchersHub) Advance (v uint64) error {

for i := s.value+l; i <= v; i++ {
wp, waiting := w.wPoints[i]
if waiting {
close (wp.ch)

delete (w.wPoints, i)

w.value v

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

e Use sync.Pool to reduce the number
of total allocations

e Prefer value types over pointers when
feasible

e Eliminate unnecessary copying

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

20

The Garbage Collector
The mark and sweep algorithm

e It walks the program’s object graph to identify objects
that are in use by the program

e |t uses a two phase technique, called
mark-and-sweep.

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

2]

The Garbage Collector
The GC Cycle: mark phase

Mark and sweep (MARK)

GC root

allocated objects + references

MARK

GOLAB The International Conference on Go in Florence | November 11th, 2024 » November 13th, 2024

22

The Garbage Collector
The GC Cycle: sweep phase

Mark and sweep (SWEEP)

GC root

allocated objects + references

SWEEP

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

23

The Garbage Collector
The GC Cycle

e GC cycles pause time increases as we allocate more
and more objects

e Itis not affected by the total amount of bytes allocated

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

24

The Garbage Collector
Reducing the number of allocations with sync.Pool

type Row struct {

}
var rowsPool = sync.Pool ({

New: func() any {
return &sql.Row{...}

}
}

s := rowsPool.Get() . (*sgl.Row)
s.reset ()

// do something with r

rowsPool.Put(s) // release r back to the pool

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

25

The Garbage Collector
Prefer values to pointers

type MyStruct struct { type MyStruct struct {
Fieldl *uint64 Fieldl uinté4
Field2 *Object Field2 Object

} }

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

26

The Garbage Collector
Cache

type cacheShard struct ({
offsets map[string]uint32
buf []byte

func (¢ *cachesShard) Put(key, value []byte) error {

func (c *cacheShard) Get(key []byte) ([]byte, error) {

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

27

The Garbage Collector
unsafe operations

func BytesToString (buf []byte) error {
return unsafe.String(unsafe.SliceData (buf), len (buf))

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

28

e Golang simplifies complex tasks, from
cryptography to concurrency, with
minimal dependencies.

e \While GC can introduce delays, there
are several options to minimize its
impact.

e Projects like immudb showcase its
effectiveness in real-world,
performance critical applications.

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

28

STEFANO SCAFITI

stefano@codenotary.com

https://codenotary.com
https:/immudb.io

https://github.com/codenotary/immudb

N\
L N
\\ \\\ 0 LY |
\ [\

A\ i I | |

A% |
(&

e e / o J
\ \ / / { {]
A\ | / / \ |/
A\ / / \ | 1/
\] W/ 4 \ | /
B A A
7 B > 1
\ \ (/«’ B R \ y
N\ I 5 l
% \ ‘ ‘\’..""/,\ \ V/’y"‘".,
\ A \ A
|

A

GOLAB The International Conference on Go in Florence | November 11th, 2024 > Novem: 'r 13th,\"

A I
‘ [| 130
' ' l| ‘)v ‘ ‘ | I

Thank You
-or Your Timel

GOLAB The International Conference on Go in Florence | November 11th, 2024 > November 13th, 2024

31

