
1

Stefano Scafiti
Lead Software Engineer at Codenotary

Exploring Go’s Prowess in
Immersive Database
Development: immudb as
a Case Study

2

AGENDA

1. immudb: The Immutable Database
2. Why Golang?
3. The Garbage Collector
4. Conclusion

3

immudb:
The Immutable Database

● immudb is a database with built-in
cryptographic proof and verification

● It operates as a key-value store, SQL or
document oriented database.

● Engineered for scalability, immudb can
handle millions of transactions per second.

4

Project History
immudb: the Immutable Database

● Started in 2020

● 4785 commits, ~70 contributors

● 47 releases (latest version is v1.9.5)

● ~146k lines of code (Golang only)

5

Applications of an immutable database
immudb: the Immutable Database

6

Immutable append only logs
immudb: the Immutable Database

● An append-only log file is a data structure where new entries are added
sequentially at the end, and existing entries cannot be modified or deleted.

7

immudb: the Merkle Tree
immudb: the Immutable Database

8

The inclusion proof
immudb: the Immutable Database

● It proofs a given leaf’s membership in the tree

9

The consistency proof
immudb: the Immutable Database

● It proofs that a merkle tree (root hash) is a superset of a
previous merkle tree

10

How immutability is proved to clients?
immudb: the Immutable Database

1. Root Hash Tracking: clients retain the most recent known
Merkle tree root hash H;

2. Proofs for Integrity: when fetching or setting a new
key-value entry E, clients can optionally request:

a. a consistency proof between H and the latest database
state H’;

b. an inclusion proof confirming that E belongs to the
Merkle tree represented by the current root hash H’.

11

Why Golang?

● Extensive standard library, including
cryptographic support

● Native concurrency features (goroutines,
channels and more)

● Successful examples of adoption in large
database and storage projects (CockroachDB,
BadgerDB)

● Tools for reducing GC load: sync.Pool, unsafe
package, etc.

12

Rich Standard Library
Why Golang for immudb

func (t *HTree) BuildWith(digests [][sha256.Size]byte) error {
 ...

b := [1 + 2*sha256.Size]byte{NodePrefix}
for w > 1 {

wn := 0
for i := 0; i+1 < w; i += 2 {

copy(b[1:], t.levels[l][i][:])
copy(b[1+sha256.Size:], t.levels[l][i+1][:])
t.levels[l+1][wn] = sha256.Sum256(b[:])
wn++

}
if w%2 == 1 {

t.levels[l+1][wn] = t.levels[l][w-1]
wn++

}
l++
w = wn

}
...

}

13

Goroutines
Why Golang for immudb

resCh := make(chan appendableResult)
go func() {

offsets, err := s.appendValuesToAnyVLog()
if err != nil {

resCh <- appendableResult{nil, err}
}
resCh <- appendableResult{offsets, nil}

}()

err = tx.BuildHashTree()
...
valuesRes := <-resCh
...

14

Channels

● Channels enable safe communication between
goroutines, avoiding explicit locks and simplifying
concurrent code.

● For simple local data sharing, channels might add
unnecessary complexity, as opposed to direct data
passing or using mutexes.

● Circular waiting patterns, where goroutines are blocked
waiting on each other, can lead to deadlocks.

Why Golang for immudb

15

Channels in the WatchersHub component
Why Golang for immudb

type WatchersHub struct {
...
value uint64
...

}

func (s *WatchersHub) WaitFor(ctx context.Context, v uint64) error {
...

}

func (s *WatchersHub) Advance(v uint64) error {
...

}

16

WatchersHub usage
Why Golang for immudb

func (s *Store) commit(ctx context.Context, …) error {

 hdr, err := s.precommit(ctx, …)

 ...

 // note: durability is only ensured when sync mode is enabled

 err := s.commitWHub.WaitFor(ctx, hdr.TxID)

 ...

}

17

WatchersHub: implementation
Why Golang for immudb

type WatchersHub struct {
wPoints map[uint64]waitPoint
value uint64
...
mtx sync.Mutex

}

type waitPoint struct {

v uint64

ch chan struct{}

count int

}

18

WatchersHub: the WaitFor method
Why Golang for immudb

func (w *WatchersHub) WaitFor(ctx context.Context, v uint64) error {
if w.value >= v {

return nil
}

 ...
wp, waiting := w.wPoints[v]
if !waiting {

wp = waitingPoint{v: v, ch: make(chan struct{})}
}
...
cancelled := false
select {

case <-wp.ch:
break

case <-ctx.Done():
cancelled = true

}
...

}

19

WatchersHub: the Advance method
Why Golang for immudb

func (w *WatchersHub) Advance(v uint64) error {
 ...

for i := s.value+1; i <= v; i++ {
wp, waiting := w.wPoints[i]
if waiting {

close(wp.ch)
...
delete(w.wPoints, i)

}
}
w.value = v
...

}

20

The Garbage Collector

● Use sync.Pool to reduce the number
of total allocations

● Prefer value types over pointers when
feasible

● Eliminate unnecessary copying

21

The mark and sweep algorithm

● It walks the program’s object graph to identify objects
that are in use by the program

● It uses a two phase technique, called
mark-and-sweep.

The Garbage Collector

22

The GC Cycle: mark phase
The Garbage Collector

23

The GC Cycle: sweep phase
The Garbage Collector

24

The GC Cycle

● GC cycles pause time increases as we allocate more
and more objects

● It is not affected by the total amount of bytes allocated

The Garbage Collector

25

Reducing the number of allocations with sync.Pool
The Garbage Collector

type Row struct {
 ...
}

var rowsPool = sync.Pool {
New: func() any {

return &sql.Row{...}
}

}

s := rowsPool.Get().(*sql.Row)
s.reset()

... // do something with r

rowsPool.Put(s) // release r back to the pool

26

Prefer values to pointers
The Garbage Collector

type MyStruct struct {

Field1 *uint64

Field2 *Object

...

}

type MyStruct struct {
Field1 uint64
Field2 Object
...

}

27

Cache
The Garbage Collector

type cacheShard struct {

offsets map[string]uint32

buf []byte

...

}

func (c *cacheShard) Put(key, value []byte) error {

...

}

func (c *cacheShard) Get(key []byte) ([]byte, error) {

...

}

28

unsafe operations
The Garbage Collector

func BytesToString(buf []byte) error {
return unsafe.String(unsafe.SliceData(buf), len(buf))

}

29

Conclusions

● Golang simplifies complex tasks, from
cryptography to concurrency, with
minimal dependencies.

● While GC can introduce delays, there
are several options to minimize its
impact.

● Projects like immudb showcase its
effectiveness in real-world,
performance critical applications.

30

STEFANO SCAFITI
stefano@codenotary.com

https://immudb.io

https://github.com/codenotary/immudb

https://codenotary.com

31

Thank You
For Your Time!

