How to write a programming language and shell in
Go with 92% test coverage and instant CI/CD

Qi Xiao (xiaq)
2024-11-12 @ GoLab

Intro

About myself

The programming language and shell this talk is about
o Elvish https://elv.sh

Like bash / zsh / ..., but more modern

o More powerful interactive features

o Full-fledged programming language
o Other modern shells: Nushell, Oils, Murex
Why make a shell?

o Make my own tool

o Help others make their own tools

https://elv.sh/
https://www.nushell.sh/
https://www.oilshell.org/
https://murex.rocks/

Full-fledged programming language

e Some think advanced programming features and shell scripting are incompatible
o But real programming features are great for shell scripting!

var hosts [[&name=a &cmd= 1
[&name=b &cmd= 11

peach {|h| ssh root@$h[name]l $hlcmd]l } $hosts
e Elvish has all the familiar shell features too

vim main.go
cat *.go | wc -1

cat *k.go | wc -1

Interactive features

o Great out-of-the-box experience (demo)
o Syntax highlighting
o Completion with
o Directory history with

o Command history with
o Filesystem navigator with [Ctrl-N

e Programmable
set edit:prompt = { print (whoami)@(tilde-abbr $pwd) }
e Soon the entire UI will be programmable with a new TUI framework

Implementing the Elvish interpreter

Interpreter basics

o All interpreters are alike
o Parsing text — parse tree
o Optionally compiling: parse tree — internal representation
o Executing parse tree / internal representation
o Runtime support: builtin data types, standard library
o Shells are a bit different:
o External commands
o Pipelines
o Consider:
echo $pid | wc

Parsing and ‘“‘compiling”

e Source code
echo $pid | wc

e Syntax tree:

Pipeline
/3 orm&rm
Form Form
Head [Arg ead
Expr Expr Expr
Type=Bareword Type=Variable Type=Bareword
Value="echo" Value="pid" Value="wc"

e Source code

echo $pid | wc

e Op tree:
pipelineOp
Form Form
formOp formOp
Head [Arg Head
variableOp variableOp literalOp

Scope=Builtin
Name="echo~"

Scope=Builtin

Value=ExternalCmd{"wc"}

Name="pid"

Execution

e echo $pid | wc e The echo command and the wc command execute
within different contexts:
pipelineOp
type Context struct {
Form \ Form stdinFile *os.File
stdinChan <-chan any
stdoutChan chan<- any
Head [Arg &ead }
variableOp variableOp . . .
Scope=Builtin Scope=Builtin | | |, l;gﬂmg?d{' " func (op *pipelineOp) exec(xContext) { ..
" " N AN =pxternaiCm wC
Name="echo~ Name="pid = func (op *formOp) exec(xContext) { ... }

e type pipelineOp struct { formOps []formOp }
func (op *pipelineOp) exec() { ... }

type formOp struct { ... }
func (op *formOp) exec() { ... }

Executing a pipeline

type pipelineOp struct { forms []1formOp }

func (op *pipelineOp) exec(ctx *Context) {
forml, form2 := forms[0@], forms[1]
r, w, _ := os.Pipe()
ch := make(chan any, 1024)
ctxl := ctx.cloneWithStdout(w, ch)
ctx2 := ctx.cloneWithStdin(r, ch)
var wg sync.WaitGroup
wg.Add(2)
go func()
go func() { form2.exec(ctx2); wg.Done()
wg.Wait()

{ forml.exec(ctx1); wg.Done() }()
()

}

e Real code

https://github.com/elves/elvish/blob/d8e2284e61665cb540fd30536c3007c4ee8ea48a/pkg/eval/compile_effect.go#L69

Data types

e Gobooland string

e Numbers: Go’s primitive number types (int, float64) and big number types (big.Int, big.Rat):
~> x (range 1 41)
» (num 815915283247897734345611269596115894272000000000)
~> + 1/10 2/10
» (num 3/10)

e Elvish has its own list and map implementations (modelled after Clojure)

https://pkg.go.dev/math/big#Int
https://pkg.go.dev/math/big#Rat

Standard library

e Elvish’s math: «— Go’s math:
~> math: logl0 100
» (num 2.0)
e Elvish’s str: « Go’s strings:
~> str:has—prefix foobar foo
» $true
e Elvish’s re: <« Go’s regexp:

~> re:match foobar
» $true

https://pkg.go.dev/math
https://pkg.go.dev/strings
https://pkg.go.dev/regexp

Go is great for writing a shell

e Execution semantics

o Pipeline: 0s.Pipe, channels, goroutines and sync.WaitGroup

o Running external commands: os.StartProcess

o Free data types and standard library
» Free garbage collection

https://pkg.go.dev/os#Pipe
https://pkg.go.dev/sync
https://pkg.go.dev/os#StartProcess

Testing the Elvish interpreter

Test strategy

o Testing is important
o Gives us confidence about the correctness of the code
o Especially when changing the code
e Most important thing about your test strategy
o Make it really easy to create and maintain tests
o Easy-to-write tests = more tests = higher test coverage
o Elvish has 92% test coverage
 Interpreters have a super simple API!
o Input: code
o Qutput: text, values

~> echo hello world

hello world

~> put [hello world] [foo barl]
» [hello world]

» [foo barl

Iteration 1: table-driven tests

func Interpret(code string) ([lany, string)

var tests = []struct{
code string
wantValues [lany
wantText string
H
{code: , wantText: },

}

func TestInterpreter(t xtesting.T) {
for _, test := range tests {
gotValues, gotText := Interpret(test.code)

Adding a test case with table-driven tests

o Steps:
I. Implement new functionality
2. Test manually in terminal:
~> str:join , [a bl
» 'a,b’
3. Convert the interaction into a test case:
{code: , wantValues: [lany{ b}
e Step 3 can get repetitive
o Computers are good at repetitive tasks

Iteration 2: transcript tests

e Record terminal transcripts in tests.elvts:
~> str:join , [a bl
» 'a,b’

» Generate the table from the terminal transcript:

const transcripts string

func TestInterpreter(t xtesting.T) {
tests := parseTranscripts(transcripts)
for _, test := range tests { }

}

e Embrace text format

o We lose strict structure, but it doesn’t matter in practice

Adding a test case with transcript tests

o Steps:
I. Implement new functionality
2. Test manually in terminal:
~> str:join , [a bl
» 'a,b’
3. Copy the terminal transcript into tests.elvts
o Copying is still work
o What if we don’t even need to copy? &

Iteration 2.1: an editor extension for transcript tests

o Editor extension for .elvts files
o Run code under cursor
o Insert output below cursor
e Steps (demo):
1. Implement new functionality
2. Test manually in tests.elvts within the editor:

~> Use str
~> str:join , [a bl
» 'a,b’

» We have eliminated test writing as a separate step during development!

Tangent: a weird dependency injection trick

You’re probably familiar with dependency injection What if the test is an external test? You can export
tricks like this: stdout, but that makes it part of the API. Instead:

package foo
var stdout = os.Stdout

func Hello() { package foo
fmt.Fprintln(stdout,) var Stdout = &stdout
I3
package foo_test
package foo func TestHello(t xtesting.T) {
func TestHello(t xtesting.T) { xfoo.Stdout = ...
stdout = ...
I3

Testing the terminal app

Widget abstraction

Like GUI apps, Elvish’s terminal app is made up of widgets, conceptually:

type Widget interface {

Handle(event Event)

Render(width, height int) xBuffer
I

o Buffer: stores rich text and the cursor position
e Event: keyboard events (among others)
o Example: CodeArea

o Stores text content and cursor position

o Render: writes a Buffer with current content and cursor
o Handle:

= (a] — insert a

= [Backspace| — delete character left of cursor
= |Left] — move cursor left

Widget API is also simple(-ish)

e Input: Event
e QOutput: Buffer
e But:
o Multiple inputs and outputs, often interleaved.
A typical test:
1. Press X], press &], render and check
2. Press [Left], render and check
3. Press [Backspace], render and check
o Tests end up verbose and not easy to write «

Leveraging Elvish and transcript tests!

e Create Elvish bindings for the widget
» Now just use Elvish transcript tests

~> send [x yl; render
Xy
~> send [Left]l; render
Xy
~> send [Backspacel; render
y
e Look a lot like screenshots tests!

o With “screenshots” embedded directly in test files

Encoding text style and cursor position

Actual render output is slightly more sophisticated:
~> send [e c o]; render

|
leco

|RRR™
|

~> send [Left]; render

|
|eco
| RRR
|

~> send [h]; render

@
@
D
ol

Testing strategy recap

o Make testing easy
e Embrace DSLs, embrace text

o If DSLs don’t solve your problem, you’re not using enough of it
e Prior art: Mercurial’s tests

https://wiki.mercurial-scm.org/WritingTests

CI/CD

e CI just uses GitHub Actions and Cirrus CI (mostly for BSD runners)
o You can simulate CPU architectures seamlessly with gemu + binfmt
e CD uses a custom pipeline (https://github.com/elves/up)

My £5/mo VPS
https://elv.sh
User SN
Caddy ——
File-
Webhook
push) webhook l.e 00 o system
GitHub — listener — | Scripts
(Go) (Elvish)

o Go is a great language to write a web server with
o Elvish is a great language for scripting

e CD builds are reproducible
o The CI workflows also verify the reproducibility of CD builds

https://github.com/elves/up

Learn more

e About interpreters
o Crafting Interpreters
e Use and learn Elvish: https://elv.sh/

o Get Elvish: https://elv.sh/get/ (one-liner installation script thanks to Go)
o Adopting a shell is not an “all or nothing” matter
o Try Elvish in the browser: https://try.elv.sh

e Hack on Elvish: https://github.com/elves/elvish

o Developer docs: https://github.com/elves/elvish/tree/master/docs

https://craftinginterpreters.com/
https://elv.sh/
https://elv.sh/get/
https://try.elv.sh/
https://github.com/elves/elvish
https://github.com/elves/elvish/tree/master/docs

0&A

