
Let's Go Asynchronous

Tomáš Sedláček
CTO, dataddo.com

mail@kedlas.cz
https://www.linkedin.com/in/tomasedlacek/

Q&A

Monolithic app

Monolithic app

Synchronously communicating microservices

Monolithic app

Synchronously communicating microservices

Asynchronously communicating microservices
AWS Managed RabbitMQ

Monolithic app

Synchronously communicating microservices

Asynchronously communicating microservices
Managed RabbitMQ

PGQ

Meet Orafo

- get and validate items
- get and validate customer details
- apply coupons
- create the order db record
- generate invoice
- process payment
- order shipping
- synchronize with CRM/ERP systems
- …

Order process

1. get order details (validate items & customer)
2. generate invoice
3. hand-over

Simplified order process

sync/http

sync/http-printer

- simple to write, read and debug
- ordered, goes function by function
- total time is the sum of each function times
- usually highly I/O dependant
- no concurrency, unless you use goroutines, async/await or similar

synchronous code

- simple to write, read and debug
- ordered, goes function by function
- total time is the sum of each function times
- highly I/O dependant
- no concurrency, unless you use goroutines, async/await or similar

- on failures you must rollback, retry or ignore error
- printer is offline
- printer crash
- printer out of ink, printer busy, printer timeout, …

synchronous code

Let's Go Asynchronous

async/http/printer

DEMO

Message brokers

go.dataddo.com/pgq

Broker in the middle

Publisher/Sender Consumer/Subscriber

Broker in the middle

Publishers Consumers

Publish

Consume / Subscribe

Consumer Acknowledgements

Discard = will not process the message
Reject

Discard

Acknowledge = I processed the message

Ack

Ack

Negative Acknowledge = I couldn’t process the message

Nack N

Request processing

Request-response processing

async/rabbit/printer

DEMO

The theory is nice,
but the pitfalls reveal the practice

OOM

rotten message

OOM

rotten message

OOM

Deadlock on Delivery Acknowledgement Timeout

Ack timeout

Ack timeout

Ack timeout

Ack timeout

go.dataddo.com/pgq

async/pgq

DEMO

Where is the
asynchronicity helpful?

Where is the asynchronicity helpful?

Order Processing Systems
Handling e-commerce orders, where each order might involve multiple steps like
payment processing, updating external systems, shipping and notifications, which
can be done asynchronously.

Where is the asynchronicity helpful?

Order Processing Systems
Background Jobs and Task Queues

Tasks such as email sending, file processing, or generating reports, which can be
offloaded to a queue and processed by worker services.

Where is the asynchronicity helpful?

Order Processing Systems
Background Jobs and Task Queues
Decoupling microservices

When microservices need to communicate without waiting for each other, allowing
for better decoupling and improved resilience of the system.

Where is the asynchronicity helpful?

Order Processing Systems
Background Jobs and Task Queues
Decoupling microservices
Data Ingestion and ETL (Extract, Transform, Load) Pipelines

Ingesting large volumes of data from various sources and processing it can be done
asynchronously to handle high throughput and avoid blocking.

Where is the asynchronicity helpful?

Order Processing Systems
Background Jobs and Task Queues
Decoupling microservices
Data Ingestion and ETL (Extract, Transform, Load) Pipelines
Load Balancing and Scaling

Distributing workloads across multiple servers or instances to handle varying load
more effectively.

Where is the asynchronicity helpful?

Order Processing Systems
Background Jobs and Task Queues
Decoupling microservices
Data Ingestion and ETL (Extract, Transform, Load) Pipelines
Load Balancing and Scaling

Distributing workloads across multiple servers or instances to handle varying load
more effectively.

Real time notifications, logging, event-driven architectures, …

Disadvantages of async code

Increased complexity in logic & code
It is usually harder to debug. Flow of the program may not be intuitive.

Disadvantages of async code

Increased complexity in logic & code
It is usually harder to debug. Flow of the program may not be intuitive.

Harder testing and debugging
Reproducing errors is more difficult, error can happen only under some circcumns.

Disadvantages of async code

Increased complexity in logic & code
It is usually harder to debug. Flow of the program may not be intuitive.

Harder testing and debugging
Reproducing errors is more difficult, error can happen only under some circcumns.

Race conditions, data consistency, deadlocks
Inconsistent When using shared resource => need for locks

It depends.

Deciding sync or async

More resources

● Messaging Patterns - Enterprise Integration Patterns
www.enterpriseintegrationpatterns.com/patterns/messaging

● Watermill website watermill.io

● Dataddo PGQ package, PGQ Youtube video go.dataddo.com

● Gopher icons github.com/MariaLetta/free-gophers-pack

https://www.enterpriseintegrationpatterns.com/patterns/messaging/
https://watermill.io/
https://go.dataddo.com/pgq/
https://www.youtube.com/watch?v=feJbKEAvBLk
https://github.com/MariaLetta/free-gophers-pack

I am nearly OOM,

but happy to answer your questions.

Q&A

Buffer slides

Following slides probably will not used at all.

Synchronous or Asynchronous?

Deciding sync or async
Blocking vs. Non-blocking

If the result is needed immediately to proceed, a synchronous call makes sense

Deciding sync or async
Blocking vs. Non-blocking

If the result is needed immediately to proceed, a synchronous call makes sense

Responsiveness
In applications with user interfaces, synchronous jobs block the main thread.

Deciding sync or async
Blocking vs. Non-blocking

If the result is needed immediately to proceed, a synchronous call makes sense

Responsiveness
In applications with user interfaces, synchronous jobs block the main thread.

Control flow
Synchronous calls ensure the tasks are executed in the order.
Asynchr. calls can reduce the execution time, but their coordination may be tricky.

Deciding sync or async
Blocking vs. Non-blocking

If the result is needed immediately to proceed, a synchronous call makes sense

Responsiveness
In applications with user interfaces, synchronous jobs block the main thread.

Control flow
Synchronous calls ensure the tasks are executed in the order.
Asynchr. calls can reduce the execution time, but their coordination may be tricky.

Scalability
Asynchronous processing can help scale more effectively (free resources)

OOM

