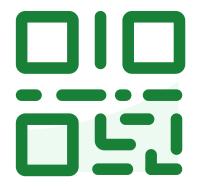
VOlue

Developing Custom Trading Algorithms in a REMIT II Compliant Environment




Maximilian Kiessler

Head of PowerBot Operations, Volue PowerBot

maximilian.kiessler@volue.com +43 699 181 249 00

- O What is REMIT II and what are the Implications?
- What are Examples of Problematic Market Situations?
- What would an Advanced Risk Management Framework look like?
- What is the Best Practice Development Process for Custom Algorithms in the Context of a Stricter Regulatory Environment?

Join at slido.com #3715610

How confident are you in your current understanding of REMIT II requirements for algorithmic trading?

An Introduction to REMIT II

- The revised Regulation on Wholesale Energy Market Integrity and Transparency (EU Regulation 2024/1106) was published 17 April 2024 and entered force on 7 May 2024
- The European Parliament has effectively extended the requirements of the Regulatory Technical Standards 6 (RTS
 6), defined by MiFID II for algorithmic trading activities in financial instruments, to cover algorithmic trading in wholesale energy products
- National Regulatory Authorities (NRAs) are provided with both regular and ad hoc supervisory roles over participants engaging in algorithmic trading activities
- The **Agency for the Cooperation of Energy Regulators** (ACER) has been granted **supervisory powers**, particularly focusing on suspected cases of cross-border market manipulation
- Market participants must **implement systems and procedures** to **identify potential breaches of REMIT** and detect and report suspicious orders and transactions

What are the Most Relevant Aspects of REMIT II?

Article 5a

- **Resilience**: Effective systems and risk controls must be in place
- **Trading Limits**: There must be safeguards to prevent sending erroneous orders or disrupting the market
- **Business Continuity**: There must be contingency plans for system failures
- **Mandatory Notification**: Participants using algorithmic trading must inform the respective NRA and ACER
- Documentation: Proper documentation on the use of algorithms must be provided
- **Record Keeping**: Keep records for five years to support compliance

Article 15

- Mandatory Reporting: If suspicion arises of a breach of Articles
 3, 4, or 5 (insider trading or market manipulation), notify ACER
 and the relevant national regulator
- Internal Controls Required:
 - Systems to detect potential breaches
 - **Independent surveillance** free from conflicts of interest
 - Procedures to report suspicious activity

But What Actually is an Algorithm?

REMIT II defines a number of criteria for a trading system to be considered "algorithmic":

- Applies to wholesale energy products traded on or off organised marketplaces (OMPs)
- Involves a computer algorithm that:
 - Automatically determines key order parameters (e.g. initiation, timing price, quantity)
 - Manages orders after submission
 - Operates with **limited or no human input**

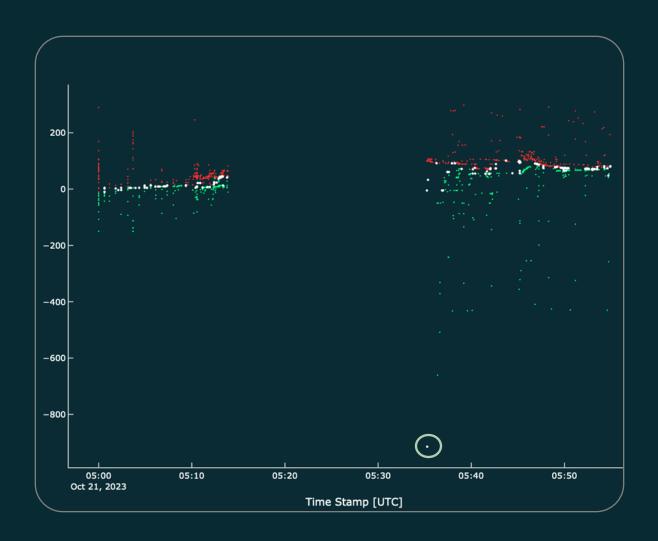
Typically **includes** the following:

- Execution algorithms (e.g. VWAP/TWAP engines for imbalance management)
- Flexibility trading algorithms (e.g. asset-backed volatility trading)
- Market-making algorithms

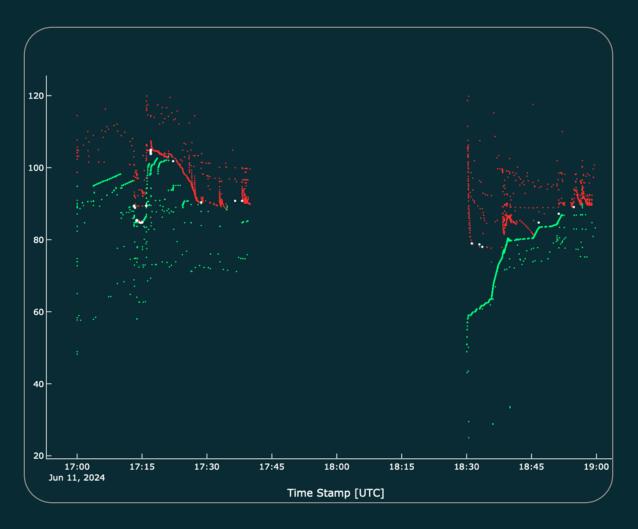
Typically **excludes** the following:

- Systems used for routing orders
- Order confirming processes
- Post-trade processing
- Tasks that do not involve trade decision-making

Scenario: A fully automated system independently determines order price & position size and creates a bidding matrix for the Day-Ahead auction.


Is this considered algorithmic trading under REMIT II?

Out-of-Market Pricing and the Signals it Sends


Scenario:

- EPEX experienced an unplanned outage.
- The figure shows the continuous order book for the quarter hour contract on 21 October 2023 06:00–06:15 UTC in Germany, Amprion on the same day between 05:00–05:55 UTC.
- Potential Market Manipulation Risk: Pricing significantly outside of prevailing market levels can distort market signals and may be perceived as an attempt to manipulate market outcomes

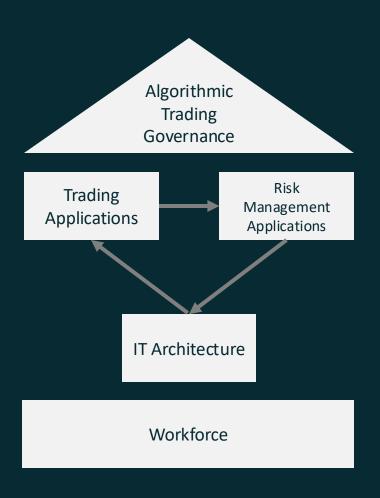
Algorithmic Feedback Loops

Scenario:

- Unplanned outage at EPEX.
- The figure shows the continuous order book for a quarter hour contract with delivery on 11 June 2024 22:15–22:30 UTC in Amprion.
- **Self-Reinforcing Price Distortions**: Algorithmic trading systems can unintentionally create feedback loops that amplify price movements.
- Unintentional Market Manipulation: Even without malicious intent, algorithmic strategies may generate patterns that fall under the definition of market manipulation

Cross-Trades as Potential Risk

Scenario:


- Snapshot of executed transaction for hourly delivery on 29 July 2024 00:00–01:00 UTC in Amprion.
- NL Tennet DE Amprion Cross-Border available capacity on 28 July 2024 between 17:00–21:30 UTC.
- Wash Trades as Potential Market Manipulation:
 Absence of change of beneficial interest or market risk is transferred between parties acting in concert or collusion.

Public Trade Records

Trad e ID	Buy Delivery Area	Sell Delivery Area	Exec Time	Quantity [MW]	Price [€/MWh]	Updated At	Self Trade
1737844529	10YNLL	10YDE-RWENETI	2024-07-28T20:22:24,043Z	0,2	74,01	2024-07-28T20:22:24.043Z	False
1737844567	10YNLL	10YDE-RWENETI	2024-07-28T20:22:25,789Z	1	74,39	2024-07-28T20:22:25.789Z	False
1737845363	10YNLL	10YDE-RWENETI	2024-07-28T20:23:08,366Z	2,7	75,4	2024-07-28T20:23:08.366Z	False
1737847376	10YNLL	10YDE-RWENETI	2024-07-28T20:24:47,203Z	0,2	76,46	2024-07-28T20:24:47.203Z	False
1737847392	10YNLL	10YDE-RWENETI	2024-07-28T20:24:47,306Z	2	76,71	2024-07-28T20:24:47.306Z	False
1737847983	10YDE-ENBWN	10YDE-RWENETI	2024-07-28T20:25:22,862Z	0,1	76,05	2024-07-28T20:25:22.862Z	False
1737848514	10YDE-EON1	10YDE-RWENETI	2024-07-28T20:26:45,695Z	6,3	76,89	2024-07-28T20:26:45.695Z	False
1737848515	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	4,9	76,81	2024-07-28T20:26:45.695Z	True
1737848516	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848517	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848518	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848519	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848520	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848521	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848522	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848523	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848524	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848525	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848526	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848527	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848528	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848529	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848530	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848531	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848532	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	5	76,81	2024-07-28T20:26:45.695Z	True
1737848533	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,695Z	3,8	76,81	2024-07-28T20:26:45.695Z	True
1737848534	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,822Z	1,2	76,81	2024-07-28T20:26:45.822Z	False
1737848535	10YNLL	10YDE-RWENETI	2024-07-28T20:26:45,822Z	0,8	76,81	2024-07-28T20:26:45.822Z	False
	10YDE-EON1	10YDE-RWENETI	2024-07-28T20:26:45,907Z	1,5		2024-07-28T20:26:45.907Z	False
1737848545	10YDE-VE2	10YDE-RWENETI	2024-07-28T20:26:45.907Z	0,5	76.36	2024-07-28T20:26:45.907Z	False
		10YDE-VE2	2024-07-28T20:28:49,451Z	0,1		2024-07-28T20:28:49.451Z	False

Advanced Algorithmic Trading and Risk Management Framework

Trading Processes

- Access to rich data backbone (historical market data, weather data etc.)
- Efficient DevOps process to allow front office to quickly iterate
- Front-to-end automation of all pre- and post-trade processes

Risk Management Processes

- Modelling financial risk to dynamically configure limit settings
- Address operational risk with real-time monitoring, alerting and kill-switch functionality
- Dedicated risk manager role

IT Architecture

- Establish effective business continuity and disaster recovery procedures
- Enable record keeping, ensuring comprehensive audit trails are available

Key Points

- A well functioning compliance framework builds on multiple pillars
- IT architecture as key enabler for processes

The Compliance Pipeline for Custom Algorithms

Ideation

Development

Validation

Production Deployment

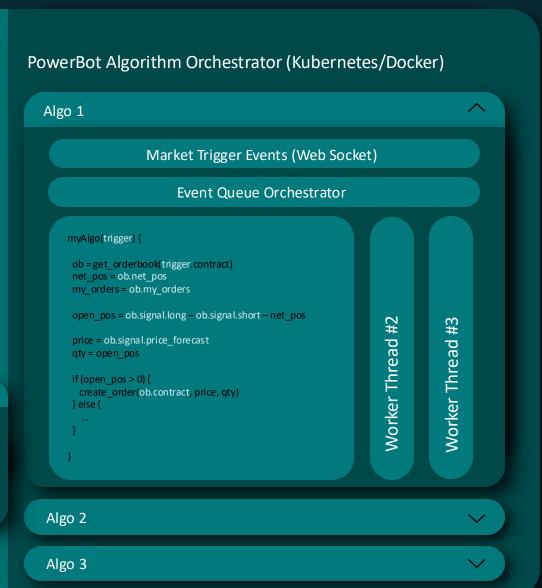
Monitoring & Continuous Improvements

- Analyze historical and real-time market data to identify patterns
- Brainstorm strategy ideas considering trading goals, market behavior, and risk appetite
- Use PowerBot's libraries, APIs, and development tools to implement your trading strategy
- Make use of
 integrated logging and
 diagnostics to enable
 future monitoring
- Make use of PowerBot's backtesting capabilities for standard algorithms where possible
- Evaluate performance and compliance for custom execution algorithms using PowerBot's shadow trading feature
- Deploy custom algorithms on top of PowerBot's reliable integrated hosting platform
- Rely on PowerBot's real-time risk management layer to enforce trading and exposure limits
- Leverage PowerBot't built-in alterting functionality to automatically be notified about urgent matters
- Connect external tools via API to widen monitoring coverage (e.g. trade surveillance tools)

Ideation – Execution vs Signal Algorithms

Execution Algorihtms

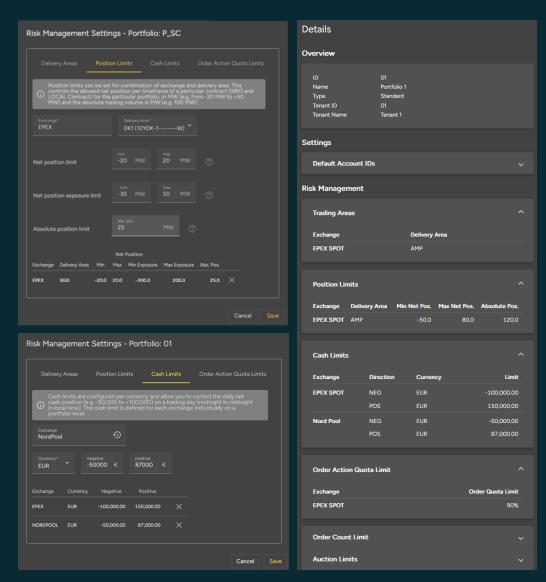
- Splits large orders into smaller slices and executes them throughout the day to match the Volume-Weighted Average Price (VWAP), reducing market impact
- Adjusts execution pace dynamically based on realtime trading volume, seeking to stay aligned with the market's activity profile
- Prioritizes low slippage, minimal signaling risk, and stealth execution


Signal Algorithms

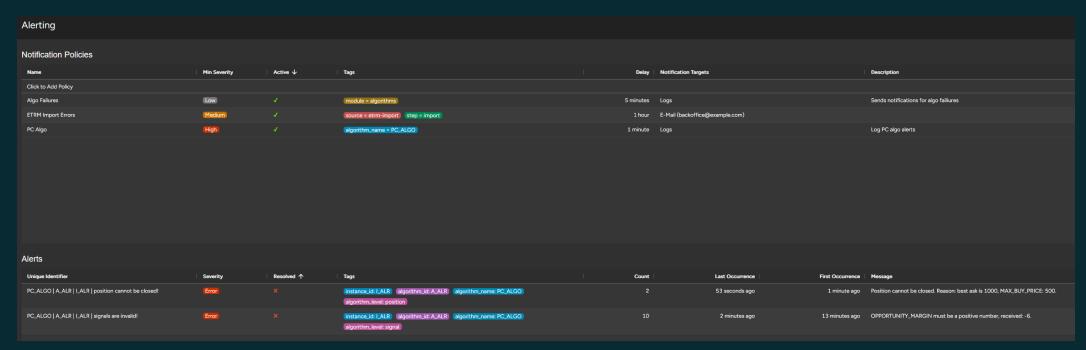
- Continuously analyzes market data, such as price trends, technical indicators, order book dynamics, or fundamental events, to detect actionable patterns
- Generates entry or exit signals based on predefined logic or models, which can be rule-based, statistical, or machine learning-driven
- Acts as the decision engine in a trading system, sending trade intent (e.g., buy/sell signals) to execution algorithms without directly placing orders

Development – Tool Kits

- Algorithm base class for Python that implements default algorithm architecture
- Algorithm deployment tools for Kubernetes and Docker Compose with high availability

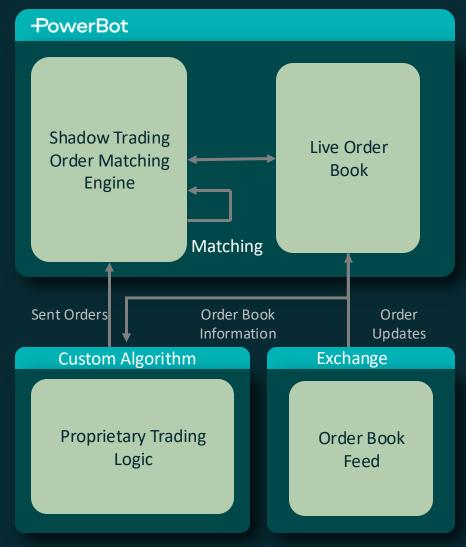


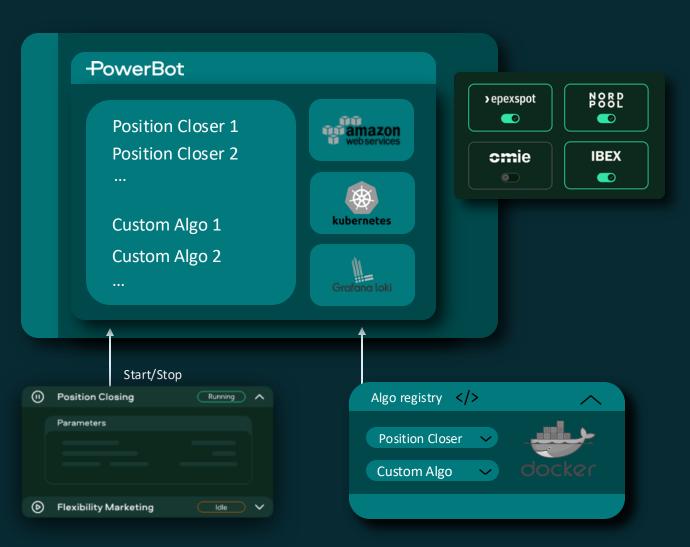
Validation - Operational Controls and Pre-Trade Checks


- Built-in Safety Layer: Pre-trade limit checks are native features of PowerBot and automatically available to all custom trading algorithms
- Customizable Risk Parameters: Users can configure thresholds such as maximum position exposure, cash limits, upper limits for order management transactions and others.
- Real-Time Enforcement: Limits are enforced before any order reaches the market, helping prevent erroneous orders and ensuring regulatory compliance

Validation - Business Continuity & Emergency Systems

- Emergency Stop: Instantly halts trading to prevent regulatory breaches or abnormal behavior
- Alerts & Notifications: Custom algorithms can trigger real-time alerts and email warnings.




Validation – Shadow Trading as Playground

- Safe Testing Environment: Shadow/Paper trading allows algorithms to run in live market conditions without financial risk, enabling performance validation before real deployment.
- Compliance Assurance: Helps identify and correct behaviors that may breach regulatory rules, ensuring strategies align with compliance standards before going live.

Production Deployment – Remote Execution Service

- Redundant production system (high availability) and staging environment
- API first architecture
- OpenAPI specification (REST) with automatic client generation
- Additional WebSocket topics for real time data streaming

Conclusion

- **Tighter REMIT II Rules**: Recent updates have increased regulatory demands and oversight.
- Robust Risk Framework Needed:
 - Market data access for validation.
 - Automated pre-/post-trade workflows.
 - Risk modeling for dynamic limits.
 - o IT resilience and continuity planning.
- Algorithm Development Lifecycle:
 - \circ Ideation \rightarrow Development \rightarrow Validation \rightarrow Deployment \rightarrow Monitoring.
- **Use Platform Features**: Built-in tools can support and streamline each development stage.

Following today's workshop, what do you see as the main obstacles in developing custom algorithms (in a REMIT II compliant way)?

