

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 6, Section 36, Denman Prospect	Doc No.	R.092.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. A wet patch of ground was observed at the south western corner of the site.

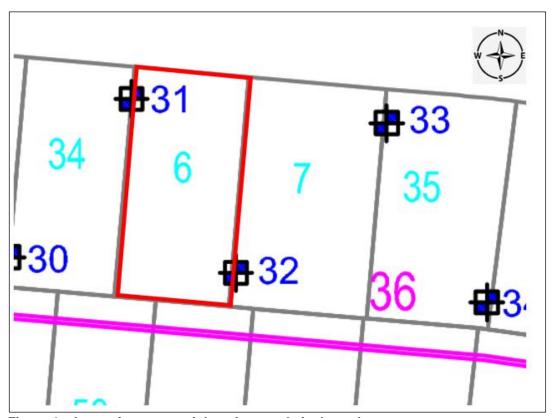


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 31 and 32) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 0.6 m and 0.5 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 31: Silty sand topsoil fill to 0.1 m depth, overlaying low to medium strength rhyodacite ignimbrite to the slow process depth of 0.6 m.

Test Pit 32: Silty sand topsoil fill to 0.1 m depth, then high plasticity silty clay to 0.35 m depth, overlaying medium strength rhyodacite ignimbrite to the slow progress depth of 0.5 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground at the south western corner of the block is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.

- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 31 and 32)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 6, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>30% lines)			
Term	Proportion	Example	
	of sand or		
	gravel		
And	Specify	Clay (60%) and	
		Sand (40%)	
Adjective	>30%	Sandy Clay	
With	15 – 30%	Clay with sand	
Trace	0 - 15%	Clay with trace	
		sand	

In coarse grained soils (>65% coarse)

- with clavs or silts

- With Clays of Sills				
Term	Proportion of fines	Example		
And	Specify	Sand (70%) and Clay (30%)		
Adjective	>12%	Clayey Sand		
With	5 - 12%	Sand with clay		
Trace	0 - 5%	Sand with trace		
		clay		

In coarse grained soils (>65% coarse)

- with coarser fraction

with coarser fraction			
Term	Proportion	Example	
	of coarser		
	fraction		
And	Specify	Sand (60%) and	
		Gravel (40%)	
Adjective	>30%	Gravelly Sand	
With	15 - 30%	Sand with gravel	
Trace	0 - 15%	Sand with trace	
		gravel	

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh	FR	No signs of decomposition or staining.	
Note: If HW and MW	Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil	• • • • • • • •	Laminite
* * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/-	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 612 AHD

EASTING: 200537 **NORTHING**: 601245 **PIT No:** 31

PROJECT No: 88231.35

DATE: 22/6/2022 SHEET 1 OF 1

		Description	.ي		Sam	pling &	& In Situ Testing	Τ.		
묍	Depth (m)	of	Graphic Log	Туре	th	Sample	Results &	Water	Dynamic Penetrometer (blows per mm)	Test
6.2		Strata	Ō	Ту	Depth	San	Results & Comments		5 10 15	20
	. 0.1	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist to dry, FILL	7. n. n.							
		RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown mottled grey, moist to dry, low to medium strength, highly to moderately weathered, fractured								
										:
	. 0.6	Pit discontinued at 0.6m -slow progress on medium strength rhyodacitic ignimbrite	1 %							
611	-1								-1	
-									-	
-									-	
-										
-										
-										
610	-2								-2	
-										
-										

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: ACT Stromlo

SAMPLING & IN SITU TESTING LEGEND A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

LOGGED: GM

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 615.7 AHD

EASTING: 200550 **NORTHING**: 601222 **PROJECT No: 88231.35**

PIT No: 32

DATE: 22/6/2022 SHEET 1 OF 1

D11	Description	j는 _	Sampling & In Situ Testing			Dynamic Penetrometer Test (blows per mm)				
Depth (m)) OI	Graphic Log	Туре	Depth	Sample	Results & Comments	Water		ows per n	nm)
	Strata		-	۵	Sa	Comments	+	5	10 15	5 20 :
- 0	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist 0.1 to dry, FILL									
-	Silty CLAY (CH): high plasticity, grey brown mottled orange, trace fine to coarse grained sand, trace low strength rhyodacitic ignimbrite, dry to moist, w <pl, hard,<="" td=""><td></td><td>D</td><td>0.2</td><td></td><td>pp >400</td><td> -</td><td></td><td></td><td></td></pl,>		D	0.2		pp >400	-			
	residual									
-	25									•
- 0.3	RHYODACITIC IGNIMBRITE: fine to coarse grained,	******								
	yellow brown brown mottled grey, dry to moist, medium strength, moderately weathered, slightly fractured	****								
- 0	0.5 Pit discontinued at 0.5m	70.2 70.2								:
-	-slow progress							:		:
							-	:		:
-								:		÷
								•		
- 1								-1		
							-			
								:	: :	÷
_										
-										
							-			
•								:		
								:		÷
							-			
-2								-2		:
_								-		:
-										
								•		:
										i
•										i
_										:
									: :	<u>:</u>

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES				
Class	Foundation				
A	Most sand and rock sites with little or no ground movement from moisture changes				
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes				
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes				
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes				
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes				
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes				

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

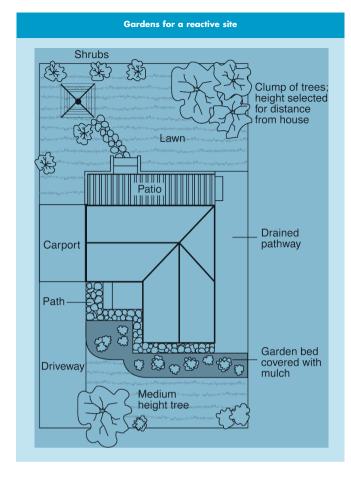
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS				
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category		
Hairline cracks	<0.1 mm	0		
Fine cracks which do not need repair	<1 mm	1		
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2		
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3		
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4		

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 7, Section 36, Denman Prospect	Doc No.	R.093.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. Wet patches of ground were observed at the south eastern corner of the site and to the south of the site on the neighbouring blocks.

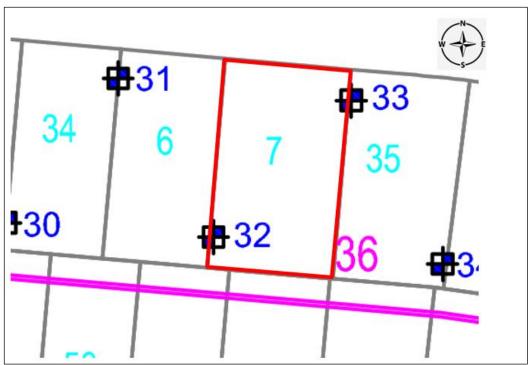


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 32 and 33) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 0.5 m and 0.6 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 32: Silty sand topsoil fill to 0.1 m depth, then high plasticity silty clay to 0.35 m depth, overlaying medium strength rhyodacite ignimbrite to the slow progress depth of 0.5 m.

Test Pit 33: Silty sand topsoil fill to 0.1 m depth, then loose to medium dense clayey sand regrade fill to 0.25 m depth, overlaying medium strength rhyodacite ignimbrite to the slow progress depth of 0.6 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground on the site and on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.

- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 32 and 33)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 7, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in tine grained soils (>35% lines)					
Term	Proportion	Example			
	of sand or				
	gravel				
And	Specify	Clay (60%) and			
		Sand (40%)			
Adjective	>30%	Sandy Clay			
With	15 – 30%	Clay with sand			
Trace	0 - 15%	Clay with trace			
		sand			

In coarse grained soils (>65% coarse)

- with clavs or silts

- with clays of site)	
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)

- with coarser fraction

With coarser maction						
Term	Proportion	Example				
	of coarser					
	fraction					
And	Specify	Sand (60%) and				
		Gravel (40%)				
Adjective	>30%	Gravelly Sand				
With	15 - 30%	Sand with gravel				
Trace	0 - 15%	Sand with trace				
		gravel				

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh	FR	No signs of decomposition or staining.	
Note: If HW and MW cannot be differentiated use DW (see below)			
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil	• • • • • • • •	Laminite
* * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 615.7 AHD

EASTING: 200550 **NORTHING**: 601222 **PIT No:** 32

PROJECT No: 88231.35

DATE: 22/6/2022 SHEET 1 OF 1

		Description	.o		Sam	ıpling &	& In Situ Testing	Τ.			
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blc	Penetrometer ows per mm)	r Test
- ,	. 0.1 -	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist		D	0.2	S	pp >400		-		
-	0.35	RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown brown mottled grey, dry to moist, medium strength, moderately weathered, slightly fractured									
615	. 0.5	Pit discontinued at 0.5m -slow progress	Lau au								
9									-		
	- 1								-1		
-											
									-		
614									-		
-											
	- 2								-2		
-											
-	•										<u>:</u> :

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 613.2 AHD

EASTING: 200570 **NORTHING**: 601242

DATE: 22/6/2022

PIT No: 33

SHEET 1 OF 1

PROJECT No: 88231.35

		Description	.i		San	npling &	& In Situ Testing			amic Penetrometer Test	
R	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	S Dynamic Penetrome (blows per mn		ter Lest 1)
Ц		Strata	U	Т	Ď	Sar	Comments	Ĺ	5	10 15	20
-	- 0.1								-		
613	- 0.25	FILL/Clayey SAND (SC): fine to coarse grained sand, yellow brown, low plasticity fines, with fine to medium gravel, moist, loose to medium dense, regrade FILL							-		
	-	RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown brown mottled grey, dry to moist, medium strength, moderately weathered, slightly fractured		1 1 1					-		
-	-		****						-		
	- 0.6		** ** ** ** ** ** ** ** **								
	-	Pit discontinued at 0.6m -slow progress							-		
-	-								-		
-	-								-		
-	-1								- 1		
612	-										
-	-								-		
-	-								-		
-	-								-		:
-	-								-		
	_										
-	-								-		
-	-2								-2		
-	-										
611	-								-		
-	-								-		

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES					
Class	Class Foundation					
A	Most sand and rock sites with little or no ground movement from moisture changes					
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes					
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes					
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes					
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes					
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes					

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

• Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

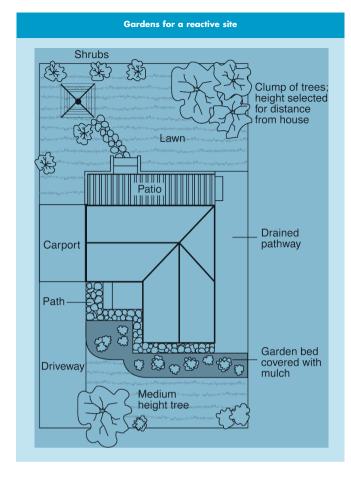
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category
Hairline cracks	<0.1 mm	0
Fine cracks which do not need repair	<1 mm	1
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Investigation Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 28, Section 36, Denman Prospect	Doc No.	R.0123.Rev0

Introduction

This report presents the factual results of a geotechnical investigation undertaken at Block 28 Section 36, Denman prospect.

It is understood that the site will be developed as part of a future undetermined multi-unit residential development. The investigation described within was undertaken to broadly assess the site conditions as part of a package of information that will be included to assist in the sale process. The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.

The investigation comprised test pits excavation with in-situ testing and sampling of the subsurface strata. Details of the work undertaken are given in the report.

Description of Site

The site comprises an area of approximately 0.16 ha. It is bounded to the east by undeveloped residential blocks and by Leontine Loop in other directions. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The topography is sloping from the south to the north.

Site Geology

Reference to BMR (1992) indicates that the site is underlain by rock units of the Laidlaw Volcanics. This typically comprise tuff, tuffaceous sandstone, rhyodacitic ignimbrite and minor volcaniclastic and argillaceous sediments.

Fieldwork Methods

The field investigation applicable to Block 28 Section 36, comprised the excavation of five test pits (Pits 22 - 25 and 49) to depths of 1.1 m - 1.5 m at the approximate locations shown in Drawing 1 attached. The test pits were excavated using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket working under the direction of a geotechnical engineer. Disturbed samples of the soils encountered in the test pits were collected for possible laboratory testing and to assist in strata identification. The test pits were located on site using a hand held GPS which is accurate only to about 3-5 m. Surface levels provided on the attached test pit logs were determined by interpolation of the finished surface level design drawings. Positions and levels must not be relied on.

Fieldwork Results

Details of the subsurface conditions encountered are summarised in the attached test pit logs. The logs must be read in conjunction with the attached notes and terms used to describe the soils and rocks.

Bulk Earthworks

During subdivision construction, controlled fill was placed within the block under Level 1 control as defined in AS 3798:2007.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Comments

- The site must be subject to a development specific geotechnical investigation.
- Additional topsoils/filling may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Development design must be undertaken by suitably qualified civil and structural engineers taking into consideration the site conditions including the existing drainage measures.
- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

BMR (1992), Geology of Canberra 1:100 000 Geological Series Sheet 8727, Bureau of Mineral Resources.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 22 – 25 and 49)

CSIRO Publication

Drawing 1

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Denman Prospect 1B - Stage 2E, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes.
 They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

111 III e graineu 30113 (2007) 1111e3)					
Term	Proportion	Example			
	of sand or				
	gravel				
And	Specify	Clay (60%) and			
		Sand (40%)			
Adjective	>30%	Sandy Clay			
With	15 – 30%	Clay with sand			
Trace	0 - 15%	Clay with trace			
		sand			

In coarse grained soils (>65% coarse)

- with clavs or silts

- with clays of sills						
Term	Proportion of fines	Example				
And	Specify	Sand (70%) and Clay (30%)				
Adjective	>12%	Clayey Sand				
With	5 - 12%	Sand with clay				
Trace	0 - 5%	Sand with trace clay				

In coarse grained soils (>65% coarse)

- with coarser fraction

- With Coarser fraction						
Term	Proportion	Example				
	of coarser					
	fraction					
And	Specify	Sand (60%) and				
		Gravel (40%)				
Adjective	>30%	Gravelly Sand				
With	15 - 30%	Sand with gravel				
Trace	0 - 15%	Sand with trace				
		gravel				

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term Abbreviation		Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low L		2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW	cannot be differentia	ated use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
B Bulk sample
D Disturbed sample
E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Graphic Syı	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * * * * * * * * * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/-/- -/-/-/-/-	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + + + + + + + + + + + + + +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × ×	Dacite, epidote
	Silty sand		Tuff, breccia
	Gravel	P D	Porphyry
: Ça : ; o C	Sandy gravel		
	Cobbles, boulders		

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
A	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

• Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

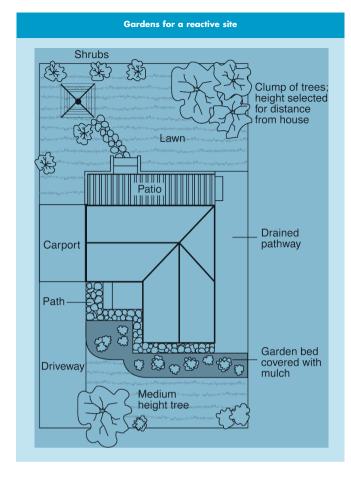
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category	
Hairline cracks	<0.1 mm	0	
Fine cracks which do not need repair	<1 mm	1	
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2	
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3	
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4	

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 618 AHD

EASTING: 200428 **NORTHING**: 601214 **PIT No: 22**

PROJECT No: 88231.35

DATE: 22/6/2022 SHEET 1 OF 1

П			Description	ي		Sam	npling &	& In Situ Testing				
씸	Dep (m	th	of	Graphic Log) e	둦	ble	Results &	Water	Dynami (I	c Penetrome	eter Test m)
	(,,,	'	Strata	\@	Type	Depth	Sample	Results & Comments	>	5	10 15	20
8.9		0.2	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, moist to dry, FILL							-		
		0.4	FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
		0.9	Clayey SAND (SC): fine to coarse grained, yellow brown, low plasticity fines, dry to moist, dense, extremely weathered rhyodacitic ignimbrite		D	0.8				-		
219	-1	1.4	RHYODACITE IGNIMBRITE: fine to coarse grained, yellow brown mottled grey, low strength, highly weathered, highly fractured							-1		
			Pit discontinued at 1.4m -limit of investigation							-		
616	-2									-2		

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 615.1 AHD

EASTING: 200443 **NORTHING**: 601229 **PIT No**: 23 **PROJECT No: 88231.35**

DATE: 22/6/2022 SHEET 1 OF 1

		Description	je.		San		& In Situ Testing	<u>_</u>	D	- D		T 4
귐	Depth (m)	OI	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per mm)			
		Strata		Ę.	۵	Sal	Comments		5	10	15	20
615		TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL						-				
	0.2	FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" hard,="" td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></pl,>						-				
					0.5		pp >400	_				
								_				
-	0.9 -	Clayey SAND (SC): fine to coarse grained, yellow brown, low plasticity fines, trace sandy clay pockets, dry to moist, dense, extremely weathered rhyodacitic ignimbrite		D	1.0			-	-1			
614								-				
	1.4	RHYODACITE IGNIMBRITE: fine to coarse grained, yellow brown mottled grey, low strength, highly weathered, highly fractured						-				
.		Pit discontinued at 1.5m -slow progress						-				
-								-				
613	-2							-	-2			
.								-				
-												

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 613.4 AHD

EASTING: 200441 **NORTHING**: 601246 **PIT No: 24**

PROJECT No: 88231.35 DATE: 22/6/2022

SHEET 1 OF 1

		Description	. <u>o</u>		San	npling &	& In Situ Testing	Τ.				
R	Depth (m)	of	Graphic Log	Туре	oth	Results & Comments			Dynamic Penetrometer Test (blows per mm)			
	()	Strata	้อ	Τχ	Depth	Sam	Results & Comments	>	5	10 15	20	
	- 0.15 - -	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" regrade="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl,>							-			
613	- 0.35 - - - - - 1 1.0 -	Sandy CLAY (CI): medium plasticity, pale orange brown mottled grey, fine to coarse grained sand, trace very low strength rhyodacitic ignimbrite, moist to dry, w <pl, hard,="" residual<="" stiff="" td="" to="" very=""><td></td><td>D</td><td>0.5</td><td></td><td>pp = 380-500</td><td></td><td>-1</td><td></td><td></td></pl,>		D	0.5		pp = 380-500		-1			
	-	RHYODACITE IGNIMBRITE: fine to coarse grained, yellow brown mottled grey, low strength, highly weathered, highly fractured										
611 ' 612 '	- 1.2 - - - - - -	Pit discontinued at 1.2m -limit of investigation							-2			

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

SAMPLING & IN SITU TESTING LEGEND LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 610.7 AHD

EASTING: 200465 **NORTHING**: 601251 **PIT No**: 25

PROJECT No: 88231.35 DATE: 22/6/2022

SHEET 1 OF 1

П		Description	. <u>S</u>	Sampling & In Situ Testing					Di. D			
씸	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per mm)			
Ш		Strata	Ŋ	Ty	De	San	Comments		5 10 15 20			
	0.1	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, trace cobbles to 120mm in size, dry to moist, w <pl, fill<="" hard,="" td=""><td></td><td></td><td>0.5</td><td></td><td>pp >400</td><td></td><td></td></pl,>			0.5		pp >400					
019	-1				1.0		pp >400		-1			
	1.2 -	Pit discontinued at 1.2m -refusal on possible bedrock							-			
609												
	-2								-2			

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: ACT Stromlo

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

WATER OBSERVATIONS: No free groundwater observed

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 619 AHD

EASTING: 200455 **NORTHING**: 601202 **PIT No**: 49

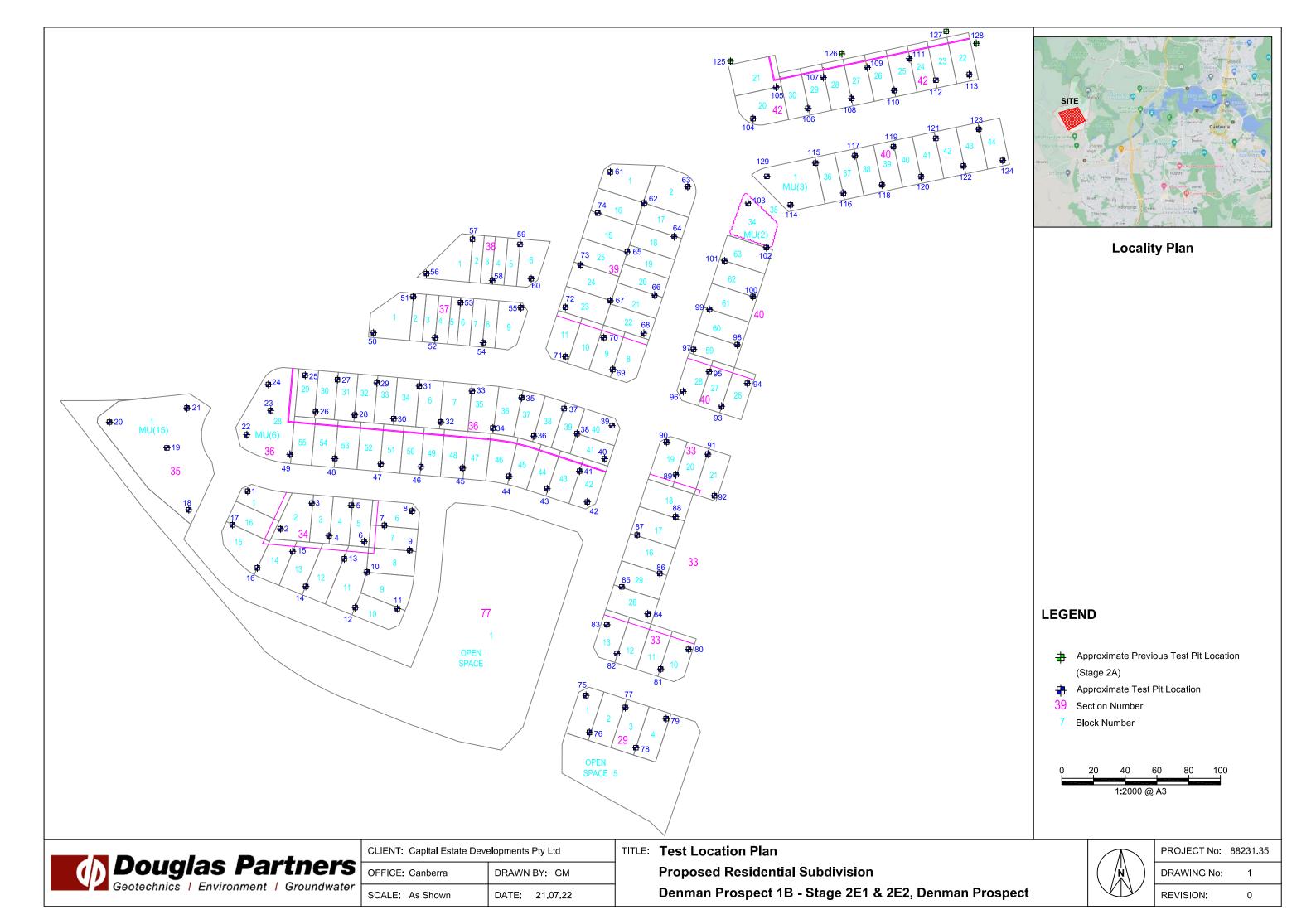
PROJECT No: 88231.35

DATE: 21/6/2022 SHEET 1 OF 1

	Definian i 103pect		Office 1 Of 1									
ے Depth	Description	hic				& In Situ Testing	<u>Б</u>	Dynamic Penetrometer Test (blows per mm)				
(m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dyi		per mn	n) 20	
0.2	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL		D	0.6	8	pp = 270-300		-				
1.1	Pit discontinued at 1.1m -limit of investigation							2				

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: ADFH SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed


REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 29, Section 36, Denman Prospect	Doc No.	R.094.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. A wet patch of ground was observed to the east of the site on the neighbouring blocks.

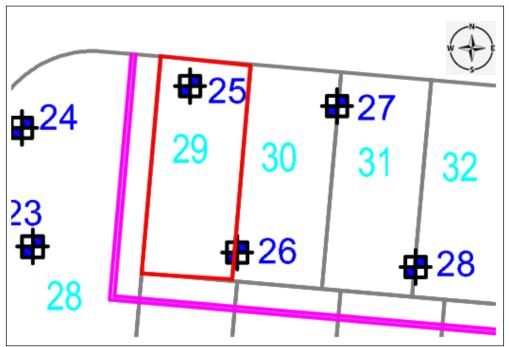


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 25 and 26) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 1.2 m and 1.1 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 25: Silty sand topsoil fill to 0.1 m depth, overlying low plasticity sandy clay controlled fill to the refusal on possible bedrock of 1.2 m.

Test Pit 26: Silty sand topsoil fill to 0.15 m depth, overlying low plasticity sandy clay controlled fill to the limit of investigation depth 1.1 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Bulk Earthworks

During subdivision construction, controlled fill was placed within the block under Level 1 control as defined in AS 3798:2007.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground to the east of the block on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site in its current profile could be re-classified as M* (moderately reactive/filled site).

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Depending on the depth of site cut and trenches, rock excavation may be required.

- It is recommended that footing excavations be inspected by a geotechnical engineer.
- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 25 and 26)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 29, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes.
 They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)		
Boulder	>200		
Cobble	63 - 200		
Gravel	2.36 - 63		
Sand	0.075 - 2.36		
Silt	0.002 - 0.075		
Clay	<0.002		

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	19 - 63	
Medium gravel	6.7 - 19	
Fine gravel	2.36 – 6.7	
Coarse sand	0.6 - 2.36	
Medium sand	0.21 - 0.6	
Fine sand	0.075 - 0.21	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

In title grained soils (>55% lifles)		
Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

- with clavs or silts

- With Clays of Sills			
Term	Proportion of fines	Example	
And	Specify	Sand (70%) and Clay (30%)	
Adjective	>12%	Clayey Sand	
With	5 - 12%	Sand with clay	
Trace	0 - 5%	Sand with trace	
		clay	

In coarse grained soils (>65% coarse)

- with coarser fraction

with coarser fraction		
Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh	FR	No signs of decomposition or staining.	
Note: If HW and MW	Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 610.7 AHD

EASTING: 200465 **NORTHING**: 601251 **PIT No**: 25

PROJECT No: 88231.35 DATE: 22/6/2022

SHEET 1 OF 1

П		Description		g & In Situ Testing		David David Tul			
씸	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per mm)
Ш		Strata	Ŋ	Ty	De	San	Comments		5 10 15 20
	0.1	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, trace cobbles to 120mm in size, dry to moist, w <pl, fill<="" hard,="" td=""><td></td><td></td><td>0.5</td><td></td><td>pp >400</td><td></td><td></td></pl,>			0.5		pp >400		
019	-1				1.0		pp >400		-1
	1.2 -	Pit discontinued at 1.2m -refusal on possible bedrock							-
609									
	-2								-2

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: ACT Stromlo

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

LOGGED: GM

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 614.1 AHD

EASTING: 200471 **NORTHING:** 601229 **PIT No**: 26

PROJECT No: 88231.35

DATE: 22/6/2022 SHEET 1 OF 1

П		Description .º				Sampling & In Situ Testing					
牊	Depth	Description of	Graphic Log	n l				Water	Dynamic Penetrometer Test (blows per mm)		
ا	(m)	Strata	Gra L	Туре	Depth	Sample	Results & Comments	Š	(blows per mm) 5 10 15 20		
614	0.15	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL				S			0 10 10 20		
	-1	FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" hard,="" stiff="" td="" to="" very=""><td></td><td></td><td>0.5</td><td></td><td>pp = 380-500 pp >400</td><td></td><td>-1</td></pl,>			0.5		pp = 380-500 pp >400		-1		
613	1.5-	-from 1.1m, trace cobbles to 150mm in size									
		Pit discontinued at 1.5m -limit of investigation									
612	-2								-2		

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES				
Class	Foundation				
A Most sand and rock sites with little or no ground movement from moisture changes					
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes				
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes				
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes				
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes				
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes				

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

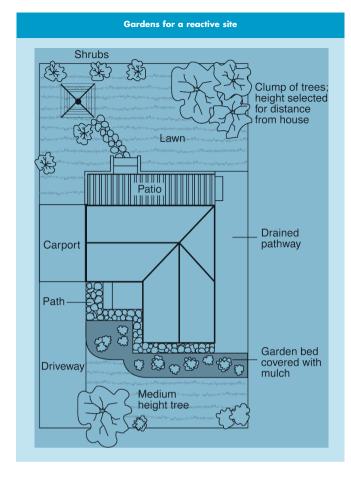
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS				
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category		
Hairline cracks	<0.1 mm	0		
Fine cracks which do not need repair	<1 mm	1		
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2		
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3		
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4		

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 30, Section 36, Denman Prospect	Doc No.	R.095.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. A wet patch of ground was observed along the eastern boundary of the site.

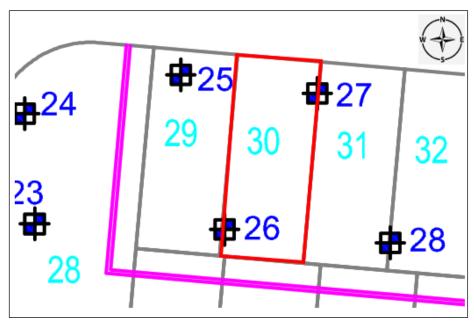


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 26 and 27) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 1.1 m and 0.4 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a handheld GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from

the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 26: Silty sand topsoil fill to 0.15 m depth, overlying low plasticity sandy clay controlled fill to the limit of investigation depth 1.1 m.

Test Pit 27: Clayey sand regrade fill to 0.2 m depth, overlying high strength rhyodacite ignimbrite the refusal depth of 0.4 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Bulk Earthworks

During subdivision construction, controlled fill was placed within the block under Level 1 control as defined in AS 3798:2007.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground on the block is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site in its current profile could be re-classified as worst case Class M* (moderately reactive/filled site) due to the controlled fill at the southern portion of the site.

Furthermore, the following should be noted:

• The north part of the site in its current profile would be equivalent to Class S* (slightly reactive/filled) conditions due to the presence of shallow rock.

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across part of the site should depths be greater than the
 test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.
- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept

groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.

- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones
Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 26 and 27)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 30, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)	
Boulder	>200	
Cobble	63 - 200	
Gravel	2.36 - 63	
Sand	0.075 - 2.36	
Silt	0.002 - 0.075	
Clay	<0.002	

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>55% lines)				
Term	Proportion	Example		
	of sand or			
	gravel			
And	Specify	Clay (60%) and		
		Sand (40%)		
Adjective	>30%	Sandy Clay		
With	15 – 30%	Clay with sand		
Trace	0 - 15%	Clay with trace		
		sand		

In coarse grained soils (>65% coarse)

- with clavs or silts

- With clays of Sills					
Term	Proportion of fines	Example			
And	Specify	Sand (70%) and Clay (30%)			
Adjective	>12%	Clayey Sand			
With	5 - 12%	Sand with clay			
Trace	0 - 5%	Sand with trace			
		clay			

In coarse grained soils (>65% coarse)

- with coarser fraction

With coarser fraction					
Term	Proportion	Example			
	of coarser				
	fraction				
And	Specify	Sand (60%) and			
		Gravel (40%)			
Adjective	>30%	Gravelly Sand			
With	15 - 30%	Sand with gravel			
Trace	0 - 15%	Sand with trace			
		gravel			

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa			
Very low VL		0.6 - 2	0.03 - 0.1			
Low	L	2 - 6	0.1 - 0.3			
Medium M		6 - 20	0.3 - 1.0			
High H		20 - 60	1 - 3			
Very high	VH	60 - 200	3 - 10			
Extremely high	EH	>200	>10			

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW	cannot be differentia	ited use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections > 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 614.1 AHD

EASTING: 200471 **NORTHING:** 601229 **PIT No**: 26

PROJECT No: 88231.35

DATE: 22/6/2022 SHEET 1 OF 1

П		Description			Sam	nplina 8	& In Situ Testing	Π	
牊	Depth	Description of	Graphic Log	ø.				Water	Dynamic Penetrometer Test (blows per mm)
4	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	×	(blows per mm) 5 10 15 20
614	0.15	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL				S			5 10 15 20 -
	-1	FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" hard,="" stiff="" td="" to="" very=""><td></td><td></td><td>0.5</td><td></td><td>pp = 380-500 pp >400</td><td></td><td>-1</td></pl,>			0.5		pp = 380-500 pp >400		-1
613	1.5-	-from 1.1m, trace cobbles to 150mm in size							
		Pit discontinued at 1.5m -limit of investigation							
612	-2								-2

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 610.5 AHD

EASTING: 200485 **NORTHING**: 601249 **PROJECT No:** 88231.35

PIT No: 27

DATE: 22/6/2022 SHEET 1 OF 1

		Description	. <u>o</u>		San	npling &	& In Situ Testing					
RL	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamio (b	Penetro	meter mm)	Test
		Strata	0	ŕ	۵	Sar	Comments		5	10	15	20
	- - 0.2	FILL/Clayey SAND (SC): fine to coarse grained, brown, with fine to medium gravel, wet, loose, regrade FILL							-			
	-	RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown, moist, high strength, slightly weathered, slightly fractured (undulated)							-			
	- 0.4	Pit discontinued at 0.4m	.							i	:	\pm
610	-	-refusal							-			
	.								-			
-									-			
-	-1								-1			
-									-			
									-			
609									-			
									-			
	-								-			
	-2								-2			
	-								-			
	.								-			
									:			

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface water flows from back of block downhill. Surface levels and coordinates are approximate only ☐ Sand Penetrometer AS1289.6.3.3 and must not be relied upon. ☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

ING & IN SITUTESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

LEGENU
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
A	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

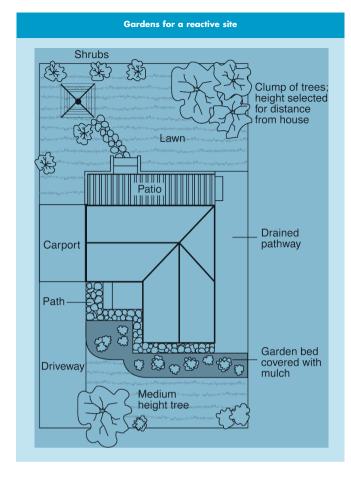
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS						
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category				
Hairline cracks	<0.1 mm	0				
Fine cracks which do not need repair	<1 mm	1				
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2				
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3				
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4				

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 31, Section 36, Denman Prospect	Doc No.	R.096.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. Wet patches of ground were observed along the western and eastern boundaries.

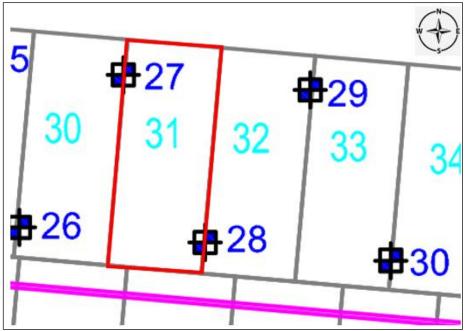


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 27 and 28) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 0.4 m and 1.1 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a handheld GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from

the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 27: Clayey sand regrade fill to 0.2 m depth, overlying high strength rhyodacite ignimbrite the refusal depth of 0.4 m.

Test Pit 28: Silty sand topsoil fill to 0.15 m depth, then low plasticity sandy clay controlled fill to 0.9 m depth, overlying medium to high strength rhyodacite ignimbrite the refusal depth of 1.1 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Bulk Earthworks

During subdivision construction, controlled fill was placed within the block under Level 1 control as defined in AS 3798:2007.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground observed on the block is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site in its current profile could be re-classified as worst case Class M* (moderately reactive/filled site) due to the controlled fill at the southern end of the site.

Furthermore, the following should be noted:

• The northern part of the site in its current profile would be equivalent to Class S* (slightly reactive/filled) conditions due to the presence of shallow rock.

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.
- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are

likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.

- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

> About this Report **Explanatory Notes**

Test Pit Logs (Pits 27 and 28)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 31, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>30% lines)			
Term	Proportion	Example	
	of sand or		
	gravel		
And	Specify	Clay (60%) and	
		Sand (40%)	
Adjective	>30%	Sandy Clay	
With	15 – 30%	Clay with sand	
Trace	0 - 15%	Clay with trace	
		sand	

In coarse grained soils (>65% coarse)

- with clavs or silts

- With clays of Sills				
Term	Proportion of fines	Example		
And	Specify	Sand (70%) and Clay (30%)		
Adjective	>12%	Clayey Sand		
With	5 - 12%	Sand with clay		
Trace	0 - 5%	Sand with trace		
		clay		

In coarse grained soils (>65% coarse)

- with coarser fraction

with coarser fraction			
Term	Proportion	Example	
	of coarser		
	fraction		
And	Specify	Sand (60%) and	
		Gravel (40%)	
Adjective	>30%	Gravelly Sand	
With	15 - 30%	Sand with gravel	
Trace	0 - 15%	Sand with trace	
		gravel	

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh	FR	No signs of decomposition or staining.	
Note: If HW and MW	Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
B Bulk sample
D Disturbed sample
E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/-	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 610.5 AHD

EASTING: 200485 **NORTHING**: 601249 **PROJECT No:** 88231.35

PIT No: 27

DATE: 22/6/2022 SHEET 1 OF 1

		Description	. <u>o</u>		San	npling &	& In Situ Testing					
묍	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamio (b	Penetro	meter mm)	Test
		Strata	0	F	۵	Sar	Comments		5	10	15	20
-	- - 0.2	FILL/Clayey SAND (SC): fine to coarse grained, brown, with fine to medium gravel, wet, loose, regrade FILL							-			
-	-	RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown, moist, high strength, slightly weathered, slightly fractured (undulated)							-			
ŀ	- 0.4	Pit discontinued at 0.4m	.							÷	:	i
610		-refusal							-			
									-			
	.								-			
-									-			
	-1								-1 :			
	-								-			
-												
609	-											
									-			
	-								-			
									-			
	-2								-2			
									-			
	.								-			
-	.								-			
L										<u>:</u>	:	:

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface water flows from back of block downhill. Surface levels and coordinates are approximate only ☐ Sand Penetrometer AS1289.6.3.3 and must not be relied upon. ☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

ING & IN SITUTESTING
G Gas sample
P Piston sample
U Tube sample (x mm dia.)
W Water sample
Water seep
Water level A Auger sample B Bulk sample BLK Block sample Core drilling
Disturbed sample
Environmental sample

LEGENU
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 614.5 AHD

EASTING: 200496 **NORTHING**: 601226 **PIT No**: 28

PROJECT No: 88231.35 DATE: 22/6/2022

SHEET 1 OF 1

П		Description	ي		Sam	npling &	& In Situ Testing				
뮙	Depth (m)	of	Graphic Log	ЭС	닱	ble	Results &	Water	Dynamic F (blow	enetromete ws per mm)	r Test
	()	Strata	Ö	Туре	Depth	Sample	Results & Comments	>	5 1		20
614	0.15-	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, trace cobbles to 100mm in size, dry to moist, w <pl, brown="" coarse="" fill="" fine="" fractured<="" grained,="" grey,="" hard,="" high="" ignimbrite:="" medium="" moderately="" moist="" mottled="" rhyodacitic="" slightly="" strength,="" td="" to="" weathered,="" wet,="" yellow=""><td></td><td></td><td>0.5</td><td>3</td><td>pp >400</td><td></td><td>-</td><td></td><td></td></pl,>			0.5	3	pp >400		-		
	1.1		* * * * * * * * *								
	-2	Pit discontinued at 1.1m -refusal							-2		

LOGGED: GM RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

	SAM	PLING	& IN SITU TESTING	LEGE	ND
Α	Auger sample	G	Gas sample	PID	Phot
В	Bulk sample	Р	Piston sample	PL(A)	
	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Poin
	Core drilling	W	Water sample	pp	Pocl
D	Disturbed sample	⊳	Water seep	S	Stan
E	Environmental sample	Ŧ	Water level	V	Shea

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
P Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES				
Class	Foundation				
A	Most sand and rock sites with little or no ground movement from moisture changes				
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes				
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes				
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes				
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes				
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes				

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

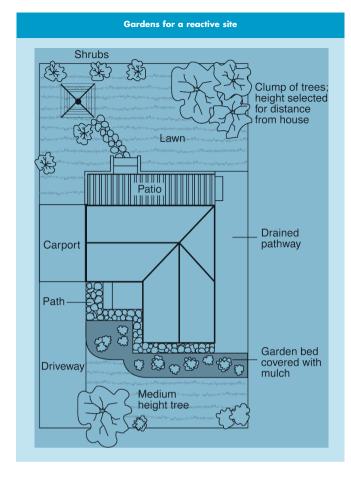
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS				
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category		
Hairline cracks	<0.1 mm	0		
Fine cracks which do not need repair	<1 mm	1		
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2		
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3		
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4		

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 32, Section 36, Denman Prospect	Doc No.	R.097.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. Wet patches of ground were observed along the eastern boundary of the site, and to the west of the site on the neighbouring blocks.

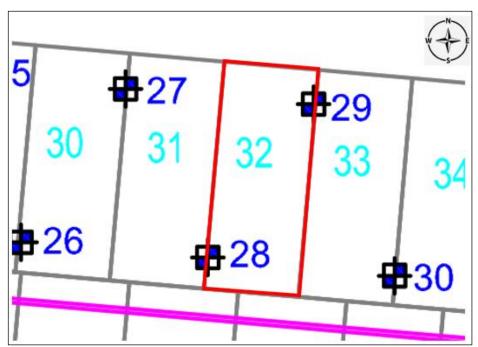


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 28 and 29) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 1.1 m and 0.3 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 28: Silty sand topsoil fill to 0.15 m depth, then low plasticity sandy clay controlled fill to 0.9 m depth, overlying medium to high strength rhyodacite ignimbrite the refusal depth of 1.1 m.

Test Pit 29: Sandy clay regrade fill to 0.1 m depth, overlying high strength rhyodacite ignimbrite the refusal depth of 0.3 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Bulk Earthworks

During subdivision construction, controlled fill was placed within the block under Level 1 control as defined in AS 3798:2007.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground observed on the site and on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site in its current profile could be re-classified as worst case Class M* (moderately reactive/filled site) due to the controlled fill at the southern portion of the site.

Furthermore, the following should be noted:

- The northern portion of the site in its current profile would be equivalent to Class S* (slightly reactive/filled) conditions due to the presence of shallow rock.
- The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.

- It is recommended that footing excavations be inspected by a geotechnical engineer.
- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 28 and 29)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 32, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>55% lines)					
Term	Proportion	Example			
	of sand or				
	gravel				
And	Specify	Clay (60%) and			
		Sand (40%)			
Adjective	>30%	Sandy Clay			
With	15 – 30%	Clay with sand			
Trace	0 - 15%	Clay with trace			
		sand			

In coarse grained soils (>65% coarse)

- with clavs or silts

- With Clays of Sills					
Term	Proportion of fines	Example			
And	Specify	Sand (70%) and Clay (30%)			
Adjective	>12%	Clayey Sand			
With	5 - 12%	Sand with clay			
Trace	0 - 5%	Sand with trace			
		clay			

In coarse grained soils (>65% coarse)

- with coarser fraction

With coarser fraction					
Term	Proportion	Example			
	of coarser				
	fraction				
And	Specify	Sand (60%) and			
		Gravel (40%)			
Adjective	>30%	Gravelly Sand			
With	15 - 30%	Sand with gravel			
Trace	0 - 15%	Sand with trace			
		gravel			

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
B Bulk sample
D Disturbed sample
E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 614.5 AHD

EASTING: 200496 **NORTHING**: 601226 **PIT No**: 28

PROJECT No: 88231.35 DATE: 22/6/2022

SHEET 1 OF 1

П		Description	ي		Sam	npling &	& In Situ Testing				
뮙	Depth (m)	of	Graphic Log	ЭС	닱	ble	Results &	Water	Dynamic F (blow	enetromete ws per mm)	r Test
	()	Strata	Ö	Туре	Depth	Sample	Results & Comments	>	5 1		20
614	0.15-	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel and cobbles, moist to dry, FILL FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, trace cobbles to 100mm in size, dry to moist, w <pl, brown="" coarse="" fill="" fine="" fractured<="" grained,="" grey,="" hard,="" high="" ignimbrite:="" medium="" moderately="" moist="" mottled="" rhyodacitic="" slightly="" strength,="" td="" to="" weathered,="" wet,="" yellow=""><td></td><td></td><td>0.5</td><td>3</td><td>pp >400</td><td></td><td>-</td><td></td><td></td></pl,>			0.5	3	pp >400		-		
	1.1		* * * * * * * * *								
	-2	Pit discontinued at 1.1m -refusal							-2		

LOGGED: GM RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

	SAM	PLING	& IN SITU TESTING	LEGE	ND
Α	Auger sample	G	Gas sample	PID	Phot
В	Bulk sample	Р	Piston sample	PL(A)	
	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Poin
	Core drilling	W	Water sample	pp	Pocl
D	Disturbed sample	⊳	Water seep	S	Stan
E	Environmental sample	Ŧ	Water level	V	Shea

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 611.2 AHD

EASTING: 200510 **NORTHING:** 601247

DATE: 22/6/2022

PIT No: 29

SHEET 1 OF 1

PROJECT No: 88231.35

		Description	. <u>o</u>	.⊆ Sampling & In Situ Testing		Τ,	David Bardan ta Tad		
R	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results &	Water	Dynamic Penetrometer Test (blows per mm)
L		Strata	Q	Ту	De	San	Results & Comments		5 10 15 20
_	- 0.1	FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" regrade="" stiff,="" td="" very=""><td>W. n. N.</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	W. n. N.						
611		RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown, dry to moist, high strength, slightly weathered, slightly fractured (undulated)		:					
-	- 0.3	Pit discontinued at 0.3m -refusal	.						
-									
-	-								
	.								
	.								
-	-1								-1
610									
-									
-									
-									
-	.								
-	.								
-	.								
-	-2								-2
-	.								
609	.								
-	.								
-	.								
L									

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: ACT Stromlo

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES					
Class	Class Foundation					
A	Most sand and rock sites with little or no ground movement from moisture changes					
S	S Slightly reactive clay sites, which may experience only slight ground movement from moisture changes					
M	M Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes					
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes					
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes					
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes					

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

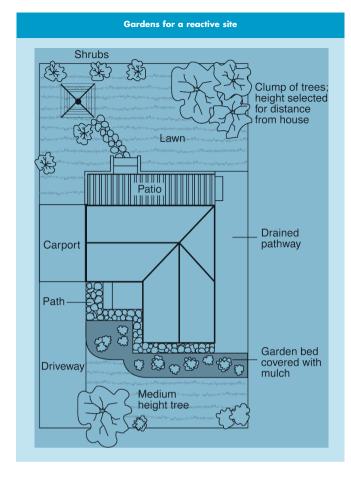
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS				
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category		
Hairline cracks	<0.1 mm	0		
Fine cracks which do not need repair	<1 mm	1		
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2		
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3		
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4		

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 33, Section 36, Denman Prospect	Doc No.	R.098.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. Wet patches of ground were observed along the western and eastern boundaries of the site, and to the east of the site on the neighbouring blocks.

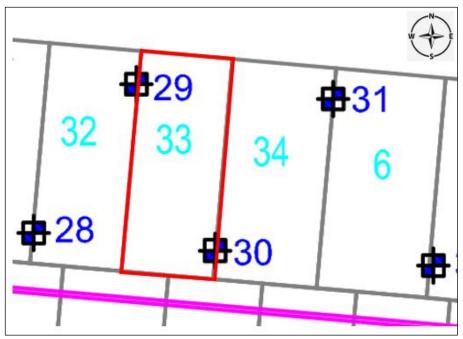


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 29 and 30) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 0.3 m and 1.1 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 29: Sandy clay regrade fill to 0.1 m depth, overlying high strength rhyodacite ignimbrite the refusal depth of 0.3 m.

Test Pit 30: Silty sand topsoil fill to 0.25 m depth, then dense clayey sand to 0.8 m depth, overlying very low strength rhyodacite ignimbrite to the limit of investigation depth of 1.1 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground observed on the site and on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.

- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones
Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 29 and 30)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 33, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>35% lines)					
Term	Proportion	Example			
	of sand or				
	gravel				
And	Specify	Clay (60%) and			
		Sand (40%)			
Adjective	>30%	Sandy Clay			
With	15 – 30%	Clay with sand			
Trace	0 - 15%	Clay with trace			
		sand			

In coarse grained soils (>65% coarse)

- with clavs or silts

- With Clays of Sills						
Term	Proportion of fines	Example				
And	Specify	Sand (70%) and Clay (30%)				
Adjective	>12%	Clayey Sand				
With	5 - 12%	Sand with clay				
Trace	0 - 5%	Sand with trace				
		clay				

In coarse grained soils (>65% coarse)

- with coarser fraction

With coarser maction						
Term	Proportion	Example				
	of coarser					
	fraction					
And	Specify	Sand (60%) and				
		Gravel (40%)				
Adjective	>30%	Gravelly Sand				
With	15 - 30%	Sand with gravel				
Trace	0 - 15%	Sand with trace				
		gravel				

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 611.2 AHD

EASTING: 200510 **NORTHING:** 601247

DATE: 22/6/2022

PIT No: 29

SHEET 1 OF 1

PROJECT No: 88231.35

		Description	. <u>o</u>	Sampling & In Situ Testing		& In Situ Testing	Τ,			
R	Depth (m)	of	Graphic Log Type		Depth	Sample	Results &	Water	Dynamic Penetrometer Test (blows per mm)	
L		Strata	Q	Туре	De	San	Results & Comments		5 10 15 20	
_	- 0.1	FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" regrade="" stiff,="" td="" very=""><td>W. n. N.</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	W. n. N.							
611		RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown, dry to moist, high strength, slightly weathered, slightly fractured (undulated)		:						
-	- 0.3	Pit discontinued at 0.3m -refusal	.							
-										
-	-									
	.									
	.									
-	-1								-1	
610										
-										
-										
-										
-	.									
-	.									
-	.									
-	-2								-2	
-	.									
609	.									
-	.									
-	.									
L										

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: ACT Stromlo

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 615.2 AHD

EASTING: 200521 **NORTHING:** 601224 **PIT No:** 30

PROJECT No: 88231.35 DATE: 22/6/2022

SHEET 1 OF 1

		Description	. <u>ಲ</u>		San		& In Situ Testing		Dynamia Danatramatar T			
Dep m (m	oth n)	of	Graphic Log	-d/	Page 1		Dynamic Penetror (blows per r		Penetrometows per mm	meter Fest mm)		
		Strata	O	ŕ	å	Sar	Comments		5.	10 15	20	
615		TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, wet, FILL							-			
	0.25	Clayey SAND (SC): fine to coarse grained, yellow brown, low plasticity fines, moist, dense, extremely weathered rhyodacitic ignimbrite										
_									-			
-1	0.8	RHYODACITE IGNIMBRITE: fine to coarse grained, yellow brown, moist, very low strength, highly weathered, highly fractured							-1			
51.9	1.1 -	Pit discontinued at 1.1m -limit of investigation							-2			
-												

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Ponded surface water to the North East of pit. Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

ı		SAMI
ı	Α	Auger sample
ı	В	Bulk sample
ı	BLK	Block sample
ı	С	Core drilling
ı	D	Disturbed sample
	Е	Environmental sample

PLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES					
Class	Foundation					
A	Most sand and rock sites with little or no ground movement from moisture changes					
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes					
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes					
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes					
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes					
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes					

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

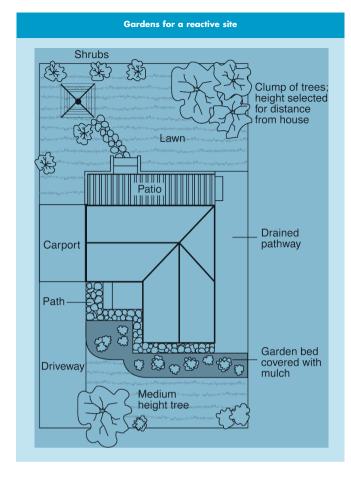
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS					
Approximate crack width Description of typical damage and required repair limit (see Note 3)					
Hairline cracks	<0.1 mm	0			
Fine cracks which do not need repair	<1 mm	1			
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2			
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3			
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4			

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 34, Section 36, Denman Prospect	Doc No.	R.099.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. Wet patches of ground were observed at the southern portion of the site, and to the east and west of the site on the neighbouring blocks.

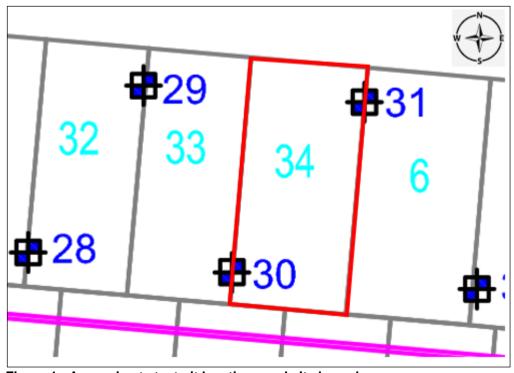


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 30 and 31) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 1.1 m and 0.6 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 30: Silty sand topsoil fill to 0.25 m depth, then dense clayey sand to 0.8 m depth, overlying very low strength rhyodacite ignimbrite to the limit of investigation depth of 1.1 m.

Test Pit 31: Silty sand topsoil fill to 0.1 m depth, overlaying low to medium strength rhyodacite ignimbrite to the slow process depth of 0.6 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground observed on the site and on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.

- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 30 and 31)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 34, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)		
Boulder	>200		
Cobble	63 - 200		
Gravel	2.36 - 63		
Sand	0.075 - 2.36		
Silt	0.002 - 0.075		
Clay	<0.002		

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	19 - 63	
Medium gravel	6.7 - 19	
Fine gravel	2.36 – 6.7	
Coarse sand	0.6 - 2.36	
Medium sand	0.21 - 0.6	
Fine sand	0.075 - 0.21	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

In title grained soils (>55% lifles)		
Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

- with clavs or silts

- With Clays of Sills			
Term	Proportion of fines	Example	
And	Specify	Sand (70%) and Clay (30%)	
Adjective	>12%	Clayey Sand	
With	5 - 12%	Sand with clay	
Trace	0 - 5%	Sand with trace	
		clay	

In coarse grained soils (>65% coarse)

- with coarser fraction

with coarser fraction		
Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh	FR	No signs of decomposition or staining.	
Note: If HW and MW	Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished ro rough sl slickensided sm smooth vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 615.2 AHD

EASTING: 200521 **NORTHING:** 601224 **PIT No:** 30

PROJECT No: 88231.35 DATE: 22/6/2022

SHEET 1 OF 1

		Description	. <u>ಲ</u>		San		& In Situ Testing					
Dep m (m	oth n)	of	Graphic Log	e d t d e c Comments		— ja Dynamic Pe		Penetrometows per mm	er Test)			
		Strata	O	È	å	Sar	Comments		5.	10 15	20	
615		TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, wet, FILL							-			
	0.25	Clayey SAND (SC): fine to coarse grained, yellow brown, low plasticity fines, moist, dense, extremely weathered rhyodacitic ignimbrite										
_									-			
-1	0.8	RHYODACITE IGNIMBRITE: fine to coarse grained, yellow brown, moist, very low strength, highly weathered, highly fractured							-1			
51.9	1.1 -	Pit discontinued at 1.1m -limit of investigation							-2			
-												

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Ponded surface water to the North East of pit. Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

ı		SAMI
ı	Α	Auger sample
ı	В	Bulk sample
ı	BLK	Block sample
ı	С	Core drilling
ı	D	Disturbed sample
	Е	Environmental sample

PLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 612 AHD

EASTING: 200537 **NORTHING**: 601245 **PIT No:** 31

PROJECT No: 88231.35

DATE: 22/6/2022 SHEET 1 OF 1

		Description	.ي		Sam	pling &	& In Situ Testing	Τ.		
묍	Depth (m)	of	Graphic Log	Туре	th	Sample	Results &	Water	Dynamic Penetrometer (blows per mm)	Test
6.2		Strata	Ō	Ту	Depth	San	Results & Comments		5 10 15	20
	. 0.1	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist to dry, FILL	7. n. n.							
		RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown mottled grey, moist to dry, low to medium strength, highly to moderately weathered, fractured								
										:
	. 0.6	Pit discontinued at 0.6m -slow progress on medium strength rhyodacitic ignimbrite	1 %							
611	-1								-1	
-									-	
-									-	
-										
-										
-										
610	-2								-2	
-										
-										

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: ACT Stromlo

SAMPLING & IN SITU TESTING LEGEND A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

LOGGED: GM

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES					
Class	Foundation					
A	Most sand and rock sites with little or no ground movement from moisture changes					
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes					
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes					
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes					
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes					
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes					

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

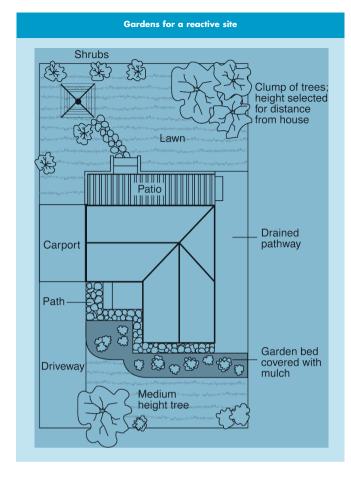
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS					
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category			
Hairline cracks	<0.1 mm	0			
Fine cracks which do not need repair	<1 mm	1			
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2			
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3			
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4			

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 35, Section 36, Denman Prospect	Doc No.	R.100.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. Wet patches of ground were observed to the south/southwest of the site on the neighbouring blocks.

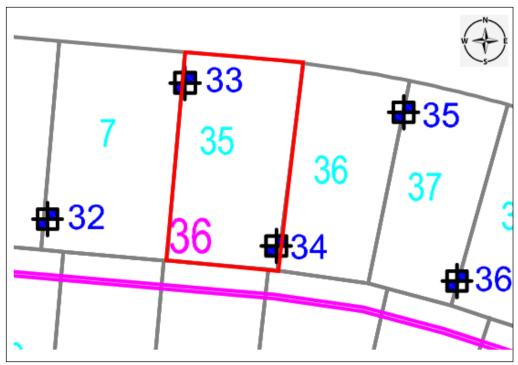


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 33 and 34) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 0.6 m and 0.7 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 33: Silty sand topsoil fill to 0.1 m depth, then loose to medium dense clayey sand regrade fill to 0.25 m depth, overlaying medium strength rhyodacite ignimbrite to the slow progress depth of 0.6 m.

Test Pit 34: Silty sand topsoil fill to 0.2 m depth, then low plasticity sandy clay regrade fill to 0.3 m depth, overlaying medium strength rhyodacite ignimbrite to the slow progress depth of 0.7 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground to the south/southwest of the site on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.

- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 33 and 34)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 35, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>55% lines)					
Term	Proportion	Example			
	of sand or				
	gravel				
And	Specify	Clay (60%) and			
		Sand (40%)			
Adjective	>30%	Sandy Clay			
With	15 – 30%	Clay with sand			
Trace	0 - 15%	Clay with trace			
		sand			

In coarse grained soils (>65% coarse)

- with clavs or silts

- With Clays of Sills						
Term	Proportion of fines	Example				
And	Specify	Sand (70%) and Clay (30%)				
Adjective	>12%	Clayey Sand				
With	5 - 12%	Sand with clay				
Trace	0 - 5%	Sand with trace				
		clay				

In coarse grained soils (>65% coarse)

- with coarser fraction

with coarser fraction							
Term	Proportion	Example					
	of coarser						
	fraction						
And	Specify	Sand (60%) and					
		Gravel (40%)					
Adjective	>30%	Gravelly Sand					
With	15 - 30%	Sand with gravel					
Trace	0 - 15%	Sand with trace					
		gravel					

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished ro rough sl slickensided sm smooth vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 613.2 AHD

EASTING: 200570 **NORTHING:** 601242

SHEET 1 OF 1

DATE: 22/6/2022

PROJECT No: 88231.35

PIT No: 33

		Description	ပ္		Sam	pling (& In Situ Testing				
R	Depth (m)	of	Graphic Log	e O	닱	ble	Results &	Water	Dynamio (b	Penetromet lows per mm	er Test)
		Strata	ပ <u>ိ</u> ာ	Туре	Depth	Sample	Results & Comments	>	5	10 15	20
-	0.1	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist to dry, FILL							-		
613	0.25	FILL/Clayey SAND (SC): fine to coarse grained sand, yellow brown, low plasticity fines, with fine to medium gravel, moist, loose to medium dense, regrade FILL							-		
		RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown brown mottled grey, dry to moist, medium strength, moderately weathered, slightly fractured							-		
-											
	0.6		W W W								
		Pit discontinued at 0.6m -slow progress							-		
-	-1								-1		
612									-		
									-		
									-		
									-		
-									-		
-											
	-2								-2		
611									-		
-									-		
									-		

LOGGED: GM RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

	SA	AMPLING	& IN SITU TESTING	LEGE	ND
4	Auger sample	G	Gas sample	PID	Phot
	Bulk sample	Р	Piston sample	PL(A)	
	Block sample	U _x	Tube sample (x mm dia.)	PL(D)	Poin
	Core drilling	W	Water sample	pp	Pocl
2	Disturbed sample	⊳	Water seep	S	Stan
Ξ	Environmental sampl	e ₹	Water level	V	Shea

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S standard penetration test
V Shear vane (kPa)

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 616.3 AHD

EASTING: 200583 **NORTHING:** 601218

PIT No: 34

DATE: 22/6/2022 SHEET 1 OF 1

PROJECT No: 88231.35

		Description	. <u>Ö</u>		Sampling & In Situ Testing		্ট্ Dynamic Pene					
RL	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynami (I	c Penetro plows per	meter I mm)	est
		Strata	O	Ţ	De	Sar	Comments		5	10	15 2	0
, , 616	- 0.2- - 0.3- -	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist to dry, FILL FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, brown="" coarse="" dry="" fill="" fine="" fractured<="" grained,="" grey,="" hard,="" ignimbrite:="" medium="" moderately="" moist,="" mottled="" regrade="" rhyodacitic="" slightly="" strength,="" td="" to="" weathered,="" yellow=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl,>							-			
-	0.7	Pit discontinued at 0.7m	***					+		:	:	
615	-1 -1	-slow progress							-1			
4	-2								-2			
614	-								-			

LOGGED: GM

WATER OBSERVATIONS: No free groundwater observed

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: ACT Stromlo

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES				
Class	Foundation				
A	Most sand and rock sites with little or no ground movement from moisture changes				
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes				
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes				
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes				
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes				
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes				

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

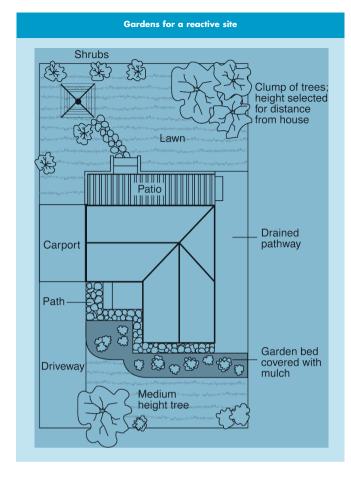
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS				
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category		
Hairline cracks	<0.1 mm	0		
Fine cracks which do not need repair	<1 mm	1		
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2		
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3		
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4		

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 36, Section 36, Denman Prospect	Doc No.	R.101.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. A wet patch of ground was observed to the south of the site on the neighbouring blocks.

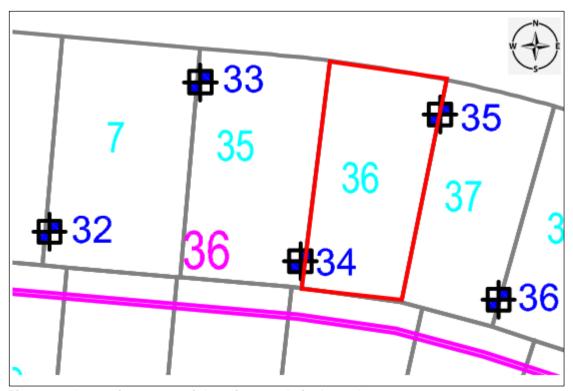


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 34 and 35) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 0.7 m and 0.4 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 34: Silty sand topsoil fill to 0.2 m depth, then low plasticity sandy clay regrade fill to 0.3 m depth, overlaying medium strength rhyodacite ignimbrite to the slow progress depth of 0.7 m.

Test Pit 35: Sandy clay regrade fill to 0.2 m depth, overlaying high strength rhyodacite ignimbrite to the refusal depth of 0.4 m.

No free groundwater was observed during the site investigation.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground to the south of the site on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.
- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.

- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones
Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 34 and 35)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 36, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)		
Boulder	>200		
Cobble	63 - 200		
Gravel	2.36 - 63		
Sand	0.075 - 2.36		
Silt	0.002 - 0.075		
Clay	<0.002		

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	19 - 63	
Medium gravel	6.7 - 19	
Fine gravel	2.36 – 6.7	
Coarse sand	0.6 - 2.36	
Medium sand	0.21 - 0.6	
Fine sand	0.075 - 0.21	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>55% lines)		
Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

- with clavs or silts

- With Clays of Sills			
Term	Proportion of fines	Example	
And	Specify	Sand (70%) and Clay (30%)	
Adjective	>12%	Clayey Sand	
With	5 - 12%	Sand with clay	
Trace	0 - 5%	Sand with trace	
		clay	

In coarse grained soils (>65% coarse)

- with coarser fraction

with coarser fraction		
Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh	FR	No signs of decomposition or staining.	
Note: If HW and MW	Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil	• • • • • • • •	Laminite
* * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/-	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 616.3 AHD

EASTING: 200583 **NORTHING:** 601218

PIT No: 34

DATE: 22/6/2022 SHEET 1 OF 1

PROJECT No: 88231.35

		Description	. <u>Ö</u>	Sampling & In Situ Testing								
RL	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynami (I	c Penetro olows per	meter I mm)	est
		Strata	O	Ţ	De	Sar	Comments		5	10	15 2	0
, , 616	- 0.2- - 0.3- -	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist to dry, FILL FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, brown="" coarse="" dry="" fill="" fine="" fractured<="" grained,="" grey,="" hard,="" ignimbrite:="" medium="" moderately="" moist,="" mottled="" regrade="" rhyodacitic="" slightly="" strength,="" td="" to="" weathered,="" yellow=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl,>							-			
-	0.7	Pit discontinued at 0.7m	***					+		:	:	
615	-1 -1	-slow progress							-1			
4	-2								-2			
614	-								-			

LOGGED: GM

WATER OBSERVATIONS: No free groundwater observed

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: ACT Stromlo

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 613.8 AHD

EASTING: 200601 **NORTHING**: 601237

PIT No: 35

DATE: 22/6/2022 SHEET 1 OF 1

PROJECT No: 88231.35

		Description	ë	Sampling & In Situ Testing					namic Penetrometer Test (blows per mm)		
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic I (blo	enetrome ws per mr	ter Lest 1)
		Strata	0	ŕ	ă	Sar	Comments		5	10 15	20
-		FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" regrade="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl,>							-		
	0.2	RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown, dry to moist, high strength, slightly weathered, slightly fractured (undulated)							-		
	0.4	Pit discontinued at 0.4m	The The The								
		-refusal							-		
									-		
613											
9									-		
	-1								-1		
									-		
									-		
									-		
									-		
612											
	-2								-2		
-											
-									-		
									-		
-									-		

LOGGED: GM RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

Α	Auger sample		G	Ga
В	Bulk sample		Р	Pis
BLK	Block sample		U,	Tuk
С	Core drilling		WÎ	Wa
D	Disturbed sample		⊳	Wa
E	Environmental sar	nple	¥	Wa

SAMPLING & IN SITU TESTING LEGEND G Gas sample
P Piston sample (x mm dia.)
W Water sample
W Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES				
Class	Class Foundation				
A	Most sand and rock sites with little or no ground movement from moisture changes				
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes				
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes				
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes				
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes				
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes				

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

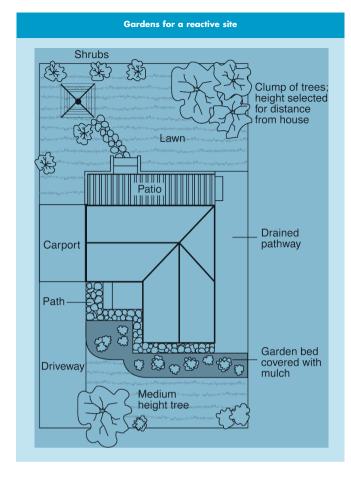
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS				
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category		
Hairline cracks	<0.1 mm	0		
Fine cracks which do not need repair	<1 mm	1		
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2		
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3		
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4		

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 37, Section 36, Denman Prospect	Doc No.	R.102.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the south to the north. Wet patches of ground were observed along the eastern boundary of the site and to the south of the site on the neighbouring blocks.

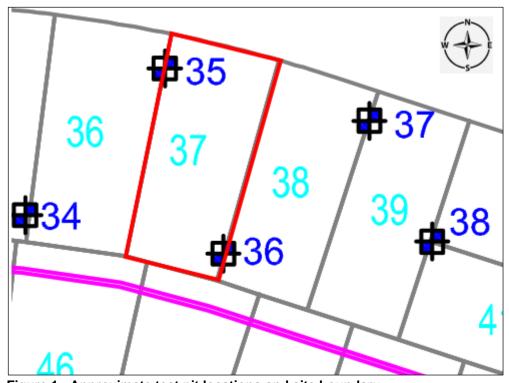


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 35 and 36) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 0.4 m and 0.5 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 35: Sandy clay regrade fill to 0.2 m depth, overlaying high strength rhyodacite ignimbrite to the refusal depth of 0.4 m.

Test Pit 36: Sandy clay regrade fill to 0.2 m depth, overlying low to medium strength rhyodacite ignimbrite to the slow progress depth of 0.5 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground observed on site and on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.

- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 35 and 36)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 37, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in fine grained soils (>35% fines)					
Term	Proportion	Example			
	of sand or				
	gravel				
And	Specify	Clay (60%) and			
		Sand (40%)			
Adjective	>30%	Sandy Clay			
With	15 – 30%	Clay with sand			
Trace	0 - 15%	Clay with trace			
		sand			

In coarse grained soils (>65% coarse)

- with clavs or silts

- With clays of Sills					
Term	Proportion of fines	Example			
And	Specify	Sand (70%) and Clay (30%)			
Adjective	>12%	Clayey Sand			
With	5 - 12%	Sand with clay			
Trace	0 - 5%	Sand with trace			
		clay			

In coarse grained soils (>65% coarse)

- with coarser fraction

With coarser fraction					
Term	Proportion	Example			
	of coarser				
	fraction				
And	Specify	Sand (60%) and			
		Gravel (40%)			
Adjective	>30%	Gravelly Sand			
With	15 - 30%	Sand with gravel			
Trace	0 - 15%	Sand with trace			
		gravel			

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW	cannot be differentia	ited use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil	• • • • • • • •	Laminite
* * * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 613.8 AHD

EASTING: 200601 **NORTHING**: 601237

PIT No: 35

DATE: 22/6/2022 SHEET 1 OF 1

PROJECT No: 88231.35

		Description	.i		San		& In Situ Testing	L			- .
R	Depth (m)	of	Graphic Log	D Comments & Comments		Results &	Dynamic Penetrometer T (blows per mm)			er lest ı)	
		Strata	0	ŕ	ă	Sar	Comments		5 1	0 15	20
		FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, dry to moist, w <pl, fill<="" regrade="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl,>							-		
-	- 0.2	RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown, dry to moist, high strength, slightly weathered, slightly fractured (undulated)							-		
-	- 0.4	Pit discontinued at 0.4m	The The The								
-		-refusal							-		
-									-		
613											
9									-		
-	- 1								-1		
-									-		
-									-		
-											
-									-		
-	-								-		
-	-								-		
612	_								-		
-	-2								-2		
-									-		
-									-		:
-	-								_		
-									_		
						D. CN	I		EV DATUBA.		i

LOGGED: GM RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

Α	Auger sample		G	Ga
В	Bulk sample		Р	Pis
BLK	Block sample		U,	Tuk
С	Core drilling		WÎ	Wa
D	Disturbed sample		⊳	Wa
E	Environmental sar	nple	¥	Wa

SAMPLING & IN SITU TESTING LEGEND G Gas sample
P Piston sample (x mm dia.)
W Water sample
W Water seep
Water level

LECEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 616.2 AHD

EASTING: 200609 **NORTHING:** 601213 **PIT No:** 36

SHEET 1 OF 1

PROJECT No: 88231.35 DATE: 22/6/2022

		Description	Se		Sam	ampling & In Situ Testing						
1	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water		namic P (blov		eter Test n)
-	0.2-	FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, wet, soft, regrade FILL				0,						
P .	0.2	RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown mottled grey, moist to dry, low to medium strength, highly to moderately weathered, fractured										
-	0.5	Pit discontinued at 0.5m										
-		-slow progress on medium strength rhyodacitic ignimbrite							_			
-									_			
_	1								-1		:	
-									_			
-									-		:	
									-		:	
									_			
									_		:	
											:	
- 2	2								-2		:	
											:	
											:	:

LOGGED: GM RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

	SAMPL	_ING	& IN SIT
Α	Auger sample	G	Gas sampl
В	Bulk sample		Piston sam
BLK	Block sample		Tube samp
С	Core drilling	W	Water sam
D	Disturbed sample		Water see
E	Environmental sample	Ī	Water leve

nple ple (x mm dia.) Water seep
 Water level
 Water

PUTESTING LEGEND

Ide PID Photo ionisation detector (ppm)
PL(A) Point load axial test 1s(50) (MPa)
PL(D) Point load diametral test 1s(50) (MPa)
PL(D) Point load diametral test 1s(50) (MPa)
PL(D) Point load diametral test 1s(50) (MPa)
PD Point load diametral test 1s(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES					
Class	Class Foundation					
A	Most sand and rock sites with little or no ground movement from moisture changes					
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes					
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes					
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes					
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes					
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes					

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

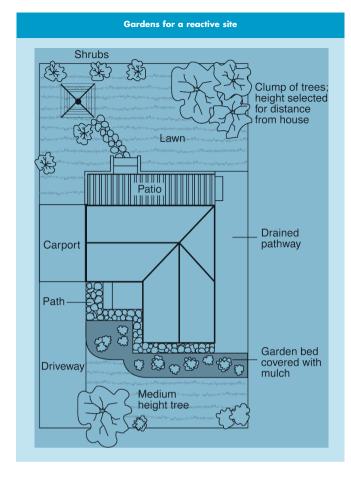
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS		
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category
Hairline cracks	<0.1 mm	0
Fine cracks which do not need repair	<1 mm	1
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 38, Section 36, Denman Prospect	Doc No.	R.103.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the southwest to the northeast. Wet patches of ground were observed along the eastern and western boundaries of the site and on the surrounding neighbouring blocks.

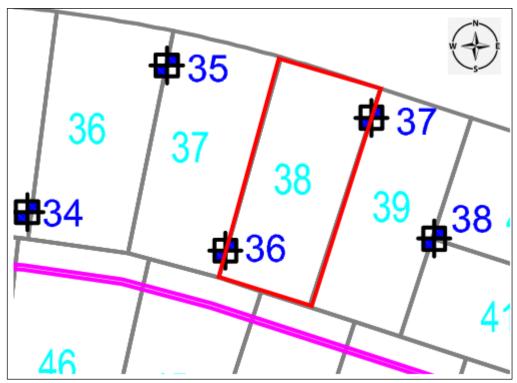


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 36 and 37) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 0.5 m and 1.0 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 36: Sandy clay regrade fill to 0.2 m depth, overlying low to medium strength rhyodacite ignimbrite to the slow progress depth of 0.5 m.

Test Pit 37: Silty sand topsoil fill to 0.15 m depth, overlaying very low strength rhyodacite ignimbrite to the slow progress depth of 1.0 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground observed on site and on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across majority of the site should depths be greater than
 the test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.

- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones
Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 36 and 37)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 38, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in tine grained soils (>35% lines)		
Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

- with clavs or silts

- With Clays of Sills		
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)

- with coarser fraction

With Coarser fraction		
Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.	
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	
Fresh	FR	No signs of decomposition or staining.	
Note: If HW and MW	Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/-	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 616.2 AHD

EASTING: 200609 **NORTHING:** 601213 **PIT No:** 36

SHEET 1 OF 1

PROJECT No: 88231.35 DATE: 22/6/2022

	\Box	Description .ºº		Sampling & In Situ Testing			_					
De (I	epth m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dyr 5		enetrome vs per mr	eter Test n)
2	0.2-	FILL/Sandy CLAY (CL): low plasticity, brown, yellow brown, fine to coarse grained sand, with fine to coarse gravel, wet, soft, regrade FILL				6,7			-			
	0.2	RHYODACITIC IGNIMBRITE: fine to coarse grained, yellow brown mottled grey, moist to dry, low to medium strength, highly to moderately weathered, fractured										
-	0.5	Pit discontinued at 0.5m							-			
-		-slow progress on medium strength rhyodacitic ignimbrite							-			
-												
- - 1									- - -1			
-									-			
-									-			
									-			
									-			
									_			
									_			
-2									-2			
									_			
									-			

LOGGED: GM RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

	SAMPL	_ING	& IN SIT
Α	Auger sample	G	Gas sampl
В	Bulk sample		Piston sam
BLK	Block sample		Tube samp
С	Core drilling	W	Water sam
D	Disturbed sample		Water see
E	Environmental sample	Ī	Water leve

nple ple (x mm dia.) Water seep
 Water level
 Water

PUTESTING LEGEND

Ide PID Photo ionisation detector (ppm)
PL(A) Point load axial test 1s(50) (MPa)
PL(D) Point load diametral test 1s(50) (MPa)
PL(D) Point load diametral test 1s(50) (MPa)
PL(D) Point load diametral test 1s(50) (MPa)
PD Point load diametral test 1s(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 613.5 AHD

EASTING: 200628 **NORTHING**: 601231

SHEET 1 OF 1

PIT No: 37

DATE: 22/6/2022

PROJECT No: 88231.35

	_		Description	. <u>S</u>		Sam		& In Situ Testing	_	Domania Domania T
R	Dep (m	Depth of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per mm)	
L	,		Strata	Ö	Ţ	De	San	Comments		5 10 15 20
-).15	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist to dry, FILL							-
-	-	,, 10	RHYODACITE IGNIMBRITE: fine to coarse grained, yellow brown, moist, very low strength, highly weathered, highly fractured							
613	}-									
-			-from 0.5m, low to medium strength, highly to moderately weathered							
	-									
ŀ	- 1	1.0	Pit discontinued at 1.0m	W NE NE						1
			-slow progress on medium strength rhyodacitic ignimbrite							
ŀ	-									
	-									
ŀ	-									
612	-									
"										
ŀ	-									
ŀ	-									<u> </u>
ŀ	-2									-2
-	-									-
İ										
-	-									
_					ш			I .		

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

		SAMPLING	& IN SITU	TESTING	LEGI	END
4	Auger sample	G	Gas sample		PID	Pho

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES					
Class	Foundation					
A	Most sand and rock sites with little or no ground movement from moisture changes					
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes					
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes					
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes					
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes					
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes					

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

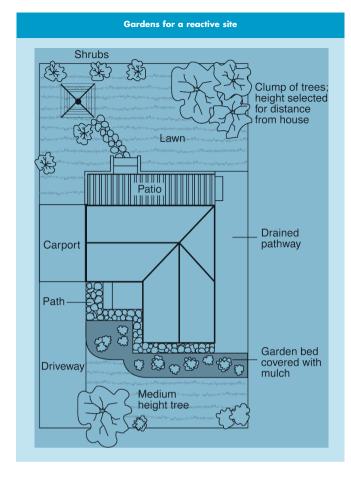
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS				
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category		
Hairline cracks	<0.1 mm	0		
Fine cracks which do not need repair	<1 mm	1		
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2		
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3		
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4		

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Site Classification Summary Report

Client	Capital Estate Developments Pty Ltd	Project No.	88231.35
Project	Proposed Residential Subdivision	Date	04 Aug 2022
Address	Block 39, Section 36, Denman Prospect	Doc No.	R.104.Rev0

Proposed Development

It is expected that a residential dwelling would be proposed for the site.

Site Description

The site is located within the recently developed Denman Prospect residential subdivision. At the time of the site investigation, topsoil was spread, but the site was bare of vegetation. The site slopes from the southwest to the northeast. Wet patches of ground were observed across the site and to the south and east of the site on the neighbouring blocks.

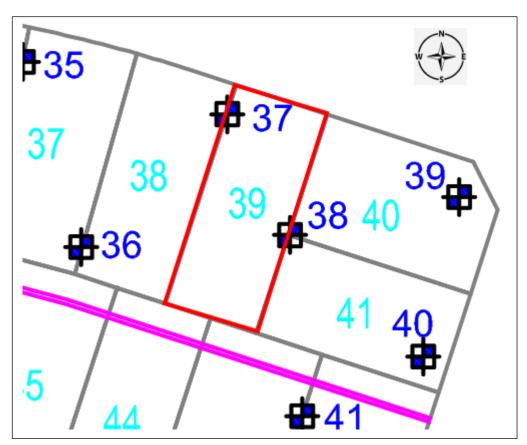


Figure 1: Approximate test pit locations and site boundary.

Classification Procedure

Subsurface Conditions: The field work comprised the excavation of two test pits (Pits 37 and 38) using a CAT 304C CR mini-excavator (~5 tonne) fitted with a 300 mm wide bucket to depths of 1.0 m and 0.9 m respectively. The pits were logged onsite by a geotechnical engineer.

The approximate test location coordinates provided on the logs were determined on site using a hand-held GPS which is accurate only to about 3-5 m. Surface levels have been broadly estimated from the contour plan provided by Woden Contractors and must not be relied on. The approximate test locations and site boundary are shown on Figure 1 above.

Details of the subsurface conditions encountered are summarised in the attached logs. The logs must be read in conjunction with the attached notes that define classification methods and terms used to describe the soils and rocks. A brief description of each test pit is provided below.

Test Pit 37: Silty sand topsoil fill to 0.15 m depth, overlaying very low strength rhyodacite ignimbrite to the slow progress depth of 1.0 m.

Test Pit 38: Clayey sand regrade fill to 0.2 m depth, overlaying low strength rhyodacite ignimbrite to slow progress depth of 0.9 m.

No free groundwater was observed during the site investigation. However, it is noted that groundwater conditions rarely remain constant and can change seasonally due to variations in rainfall, temperature and soil permeability. Furthermore, the test pits were backfilled immediately after excavation, precluding long-term monitoring of groundwater levels. For these reasons, it is noted that the moisture condition of the site soils may vary considerably from the time of the investigation compared to at the time of construction.

Laboratory Results

Laboratory testing results indicated liquid limit ranging from 29 - 80%, plasticity index ranging from 12 - 57% and linear shrinkage ranging from 7.0 - 20.0%.

Site Classification

Due to the potential groundwater issue (the wet ground observed on site and on the neighbouring blocks is likely due to a groundwater spring), the site is classified as a Class P (problem site) based on limited subsurface information and determined in general accordance with the requirements of AS 2870:2011.

However, it should be noted that the slope of the site is likely to lead to adjustments to levels through cut and fill operations, which are likely to generate the following outcomes:

- If the prepared building pad exposes weathered rock over its entirety, a Class A classification may be appropriate provided groundwater seepages are controlled.
- If surface and/or subsurface drains are installed to control the adverse moisture conditions, the site
 in its current profile could be re-classified as Class S (slightly reactive) due to the presence of
 shallow rock.

Furthermore, the following should be noted:

 The classification must be reassessed should the soil profile change either by adding fill or removing soil from the block and/or if the presence of service trenches or retaining walls are within the zone of influence of the block.

Footing Systems

Design must be based on engineering principles (i.e. Class P conditions) by a suitably qualified structural engineer taking into consideration any onsite or offsite constraints. Due to the relatively shallow depth of rock, it is recommended that the dwelling found on weathered rock. It is possible that rock will be exposed in site cut, therefore all footings should be found in that same material to avoid differential settlements. Dwelling design will need to ensure uniform moisture conditions are maintained in the vicinity of the footings otherwise footing performance could be compromised.

All footings should found within a uniform bearing stratum of suitable strength/material as detailed in AS 2870:2011, below the zone of influence of any uncontrolled fill, service trenches or pipes, retaining walls or underground structures. Masonry walls should be articulated in accordance with current best practice.

Maintenance Guidelines

Reference should be made to the attached CSIRO Sheet BTF 18 'Foundation Maintenance & Footing Performance' to comments about gardens, landscaping and trees on the performance of foundation soils and in particular in respect to maintaining good surface drainage. It notes that minor cracking in most structures is inevitable, and it describes site maintenance practices aimed at minimising foundation movements that can lead to cracking damage.

Comments

- The successful purchaser must make their own interpretations, deductions and conclusions from the information made available and will need to accept full responsibility for such interpretations, deductions and conclusions.
- Development specific geotechnical investigations must be undertaken.
- Additional topsoils/fill may have been spread subsequent to the investigation.
- Some variability in subsurface conditions must be anticipated.
- Site preparation prior to the construction of a dwelling should include removal of all vegetation, topsoil and uncontrolled fill.
- All new fill must be placed under controlled conditions (AS 3798:2007). If fill is placed uncontrolled, those areas would require a Class P site classification and deemed not suitable to support loading.
- Hard rock excavation must be anticipated across part of the site should depths be greater than the
 test pit depths. Site excavation depths should take into consideration the depth to rock to reduce
 construction costs.
- It is recommended that footing excavations be inspected by a geotechnical engineer.

- Moisture condition of site soils and/or the presence of groundwater may vary considerably from time of investigation compared to at the time of construction. Groundwater springs and/or flows are likely to be more prominent after heavy or prolonged rainfall. Excavations could intercept groundwater flows; therefore it is recommended all retaining walls are water proofed and drainage installed behind them.
- Drainage works to control groundwater seepages have been installed during the subdivision construction. The successful purchaser should seek advice from the developer before any construction works.
- Consideration must be given to the performance of service pipes should they be installed in fill.
- Drainage measures must be installed to manage groundwater seepages.
- Further advice on control of groundwater should be obtained from an experienced geotechnical engineer following completion of concept designs of the proposed dwelling.

References

AS 2870:2011, Residential Slabs and Footings, Standards Australia.

AS 3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Limitations

This report must be read in conjunction with the attached "Limitations" and notes "About this Report".

Douglas Partners Pty Ltd

Reviewed by

Guanghui Meng

Geotechnical Engineer

Michael Jones

Principal

Attachments: Limitations

About this Report Explanatory Notes

Test Pit Logs (Pits 37 and 38)

CSIRO Publication

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 73 Sheppard Street Hume ACT 2620 PO Box 1487 Fyshwick ACT 2609 Phone (02) 6260 2788 Fax (02) 6260 1147

Limitations

Douglas Partners (DP) has prepared this report for this project at Block 39, Section 36, Denman Prospect in accordance with DP's proposal 88231.35.P.001.Rev0 dated 1 September 2021 and acceptance received from Capital Estate Developments Pty Ltd dated 15 June 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Capital Estate Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

About this Report Douglas Partners

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners On the sample of the s

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions Douglas Partners

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 – 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils (>35% fines)

in line grained soils (>55% lines)						
Term	Proportion	Example				
	of sand or					
	gravel					
And	Specify	Clay (60%) and				
		Sand (40%)				
Adjective	>30%	Sandy Clay				
With	15 – 30%	Clay with sand				
Trace	0 - 15%	Clay with trace				
		sand				

In coarse grained soils (>65% coarse)

- with clavs or silts

- WILLI Clays OF SILLS						
Term	Proportion of fines	Example				
And	Specify	Sand (70%) and Clay (30%)				
Adjective	>12%	Clayey Sand				
With	5 - 12%	Sand with clay				
Trace	0 - 5%	Sand with trace				
		clay				

In coarse grained soils (>65% coarse)

- with coarser fraction

With Coarser fraction						
Term	Proportion	Example				
	of coarser					
	fraction					
And	Specify	Sand (60%) and				
		Gravel (40%)				
Adjective	>30%	Gravelly Sand				
With	15 - 30%	Sand with gravel				
Trace	0 - 15%	Sand with trace				
		gravel				

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations.
 Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition - Coarse Grained Soils

For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together.

Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition - Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions Douglas Partners The second control of the sec

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is(50) MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎. It should be noted that the UCS to Is₍₅₀₎ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia

NQ Diamond core - 47 mm dia HQ Diamond core - 63 mm dia PQ Diamond core - 81 mm dia

Water

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved
ir irregular
pl planar
st stepped
un undulating

Roughness

po polished
ro rough
sl slickensided
sm smooth
vr very rough

Other

fg fragmented bnd band qtz quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Grapnic Syl	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)\(\frac{1}{2}\cdot\)	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * * * *	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
/////	Sandy clay	Metamorphic	Rocks
	Gravelly clay	~~~~	Slate, phyllite, schist
-/-/-/- -/-/-/-/	Shaly clay	+ + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+ + + + + + + , + , +	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	× × × × × × × × × × × × × × × × × × ×	Dacite, epidote
	Silty sand	V V V	Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

TEST PIT LOG

Capital Estate Developments Pty Ltd **CLIENT:** PROJECT: Proposed Residential Subdivision LOCATION:

Denman Prospect 1B - Stage 2E1 & 2E2,

Denman Prospect

SURFACE LEVEL: 613.5 AHD

EASTING: 200628 **NORTHING**: 601231

SHEET 1 OF 1

PIT No: 37

DATE: 22/6/2022

PROJECT No: 88231.35

	_		Description	. <u>S</u>		Sam		& In Situ Testing	_	Domania Domania T
R	Dep (m	th)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per mm)
L	,		Strata	Ö	Ţ	De	San	Comments		5 10 15 20
-).15	TOPSOIL FILL/Silty SAND (SM): fine to coarse grained, grey brown, low plasticity fines, with surface gravel, moist to dry, FILL							-
-	-	,, 10	RHYODACITE IGNIMBRITE: fine to coarse grained, yellow brown, moist, very low strength, highly weathered, highly fractured							
613	}-									
-			-from 0.5m, low to medium strength, highly to moderately weathered							
	-									
ŀ	- 1	1.0	Pit discontinued at 1.0m	W NE NE						1
			-slow progress on medium strength rhyodacitic ignimbrite							
ŀ	-									
	-									
ŀ	-									
612	-									
"										
ŀ	-									
ŀ	-									<u> </u>
ŀ	-2									-2
-	-									-
İ										
-	-									
_					ш			I .		

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

		SAMPLING	& IN SITU	TESTING	LEGI	END
4	Auger sample	G	Gas sample		PID	Pho

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PD Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

TEST PIT LOG

CLIENT: Capital Estate Developments Pty Ltd Proposed Residential Subdivision **PROJECT:**

Denman Prospect 1B - Stage 2E1 & 2E2,

SURFACE LEVEL: 614.8 AHD

EASTING: 200636 **NORTHING:** 601215 **PIT No: 38**

PROJECT No: 88231.35 **DATE:** 22/6/2022

LOCATION: Denman Prospect SHEET 1 OF 1 Sampling & In Situ Testing Description Graphic Dynamic Penetrometer Test Depth Log 占 of (blows per mm) Depth Sample Results & Comments Strata FILL/Clayey SAND (SC): fine to coarse grained, yellow brown, low plasticity fines, wet, loose, regrade FILL RHYODACITE IGNIMBRITE: fine to coarse grained, yellow brown, moist, low strength, highly weathered, highly fractured 0.9 Pit discontinued at 0.9m -slow progress on medium strength rhyodacitic ignimbrite

RIG: CAT 304C CR mini excavator fitted with a 300mm wide bucket LOGGED: GM SURVEY DATUM: ACT Stromlo

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Shallow medium strength rhyodacitic ignimbrite at 0.4m at Eastern end of pit. Surface levels and coordinates are approximate only and must not be relied upon.

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

		SAMPLIN
Α	Auger sample	G
В	Bulk sample	Р
BLK	Block sample	U, W
С	Core drilling	WÎ
D	Disturbed sample	⊳
E	Environmental sar	mple ₹

. 2

AMPLING & IN SITU TESTING LEGEND Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

2

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

GENERAL DEFINITIONS OF SITE CLASSES		
Class	Foundation	
A	Most sand and rock sites with little or no ground movement from moisture changes	
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes	
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes	
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes	
H2	H2 Highly reactive clay sites, which may experience very high ground movement from moisture changes	
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes	

Notes

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure. Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

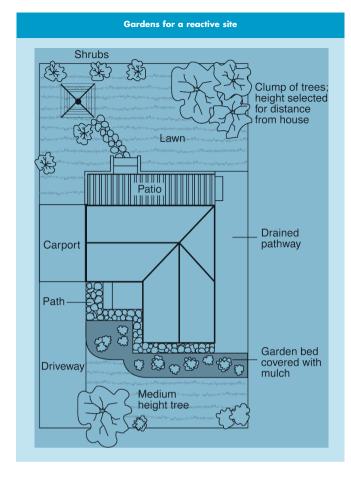
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS			
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category	
Hairline cracks	<0.1 mm	0	
Fine cracks which do not need repair	<1 mm	1	
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2	
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3	
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4	

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING Locked Bag 10, Clayton South VIC 3169

Tel (03) 9545 8400 1300 788 000 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited