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1 Introduction

1.1 Speech-to-Speech for Enterprise Voice Agents

Large language models (LLMs) and multimodal foundation models have emerged as a promising
paradigm to build conversational voice agents that automate customer service, scheduling, and
support tasks. The application of existing sequence modeling approaches from LLMs to audio has
driven an evolution in the deep learning community away from traditional cascaded architectures and
toward end-to-end speech-to-speech (STS) models. Despite their promise, deploying STS models
in production environments presents significant technical challenges that remain to be addressed.

The computational demands of production deployment are substantial. Voice agent systems must
process millions of concurrent conversations while maintaining strict latency requirements to enable
natural interactions. Meeting these constraints while keeping operational costs manageable requires
careful optimization of model architectures and inference strategies. Traditional approaches using
separate ASR, LLM, and TTS models quickly become computationally prohibitive at scale.

Quality and controllability requirements further complicate deployment. The system must maintain
high-quality speech perception across diverse accents, challenging acoustic conditions, and localized
jargon and vocabulary, while still ensuring sophisticated language understanding and natural speech
synthesis. Moreover, the agent’s behavior must be steerable through high-level controls to maintain
consistent persona and comply with business requirements. This combination of quality and control
demands sophisticated model architectures that can be tuned and monitored.

Debuggability is essential for production systems but particularly challenging for end-to-end models.
When issues arise, system behaviors must be monitorable and errors must be traceable to their
source. This requires maintaining interpretable intermediate representations throughout the STS
pipeline, rather than treating the system as a black box. Yet preserving such interpretability while
achieving end-to-end optimization remains an open challenge.

In this technical brief, we introduce Neuroplex, a novel speech-to-speech architecture inspired by
modular specialization in the mammalian brain. In the following sections, we detail the architecture
and training methodology of an initial research prototype, and demonstrate its key capabilities. The
results suggest that Neuroplex represents a promising practical step towards expressive, debuggable
end-to-end voice agent systems.

1.2 Previous Work

Traditional speech-to-speech systems cascade separate ASR, LLM, and TTS models. While modular
and interpretable, these pipelines suffer from several limitations. Converting speech to text and back
loses rich acoustic information about speaker state and environmental context that could inform
response generation. The cascaded architecture also suffers from error propagation, lacks end-to-end
optimization, and can be computationally expensive at scale since it typically involves autoregressive
decoding of the three component models.



Early attempts at end-to-end speech-to-speech modeling, such as Nguyen et al. (2022) and Ma et al.
(2024), focused on direct speech signal modeling without relying on text intermediaries. While
these systems successfully captured paralinguistic features and turn-taking dynamics directly from
audio, they often struggled with semantic coherence and complex reasoning due to limited training
data and the absence of large-scale language models.

Current research in end-to-end STS models has diverged into two main approaches. The first
develops native multimodal architectures that treat speech and text as co-equal modalities from
the ground up. These models, such as Défossez et al. (2024) and Zeng et al. (2024), unify speech
and text representations within a single architecture, often incorporating specialized mechanisms for
real-time dialogue and expressive speech generation. Zhang et al. (2024b) and Zhang et al. (2024a)
demonstrate that such unified architectures can achieve sub-100ms latency while maintaining natural
turn-taking and full-duplex capabilities. However, these models often require extensive training
from scratch and struggle to retain the sophisticated reasoning capabilities and steerability of large
language models.

The second approach extends existing large language models to handle speech while carefully
preserving their sophisticated language understanding capabilities. These systems introduce
specialized adapters and alignment modules to bridge modalities while keeping the LLM backbone
largely frozen. Models like Fang et al. (2024) and Wang et al. (2024) exemplify this strategy,
using careful alignment techniques to maintain the LLM’s core capabilities while adding speech
understanding and generation. Chen et al. (2025) demonstrates this approach can scale to
multilingual settings through extensive alignment training. While these models leverage powerful
pre-trained language understanding, they can face challenges in maintaining low latency and
achieving truly end-to-end optimization due to their modular design. They also typically rely on
decoding the intermediate model representation to text, which loses rich acoustic information and
adds latency.

2 Neuroplex Architecture and Implementation

Neuroplex is an end-to-end speech-to-speech architecture inspired by the efficiency of the
mammalian brain, where specialized regions work in concert through generalized connections to
achieve optimal cognitive processing. Like neural pathways connecting specialized brain regions,
Neuroplex is built by fusing state-of-the-art component models for speech perception (ASR),
language understanding (LLM), and speech synthesis (TTS) through learned adapter networks.
These adapters enable compressed, rich information flow between latent spaces, similar to how
the brain’s white and gray matter structures facilitate efficient communication between specialized
regions.

Neuroplex is trained end-to-end in a multi-task framework that preserves each component’s
specialized capabilities while ensuring alignment between the LLM’s internal representations and
generated speech. This alignment, combined with the LLM’s instruction-following capabilities,
enables fine-grained control over the model’s persona and output characteristics through system
prompts. The architecture maintains interpretability while allowing precise control over generated
speech via natural language instructions.

2.1 Model Architecture

The system comprises four primary modules—ASR, LLM, text2codes (T2C), and codes2audio
(C2A)—connected via trainable adapter networks that transform hidden representations between
components. Figure 1 illustrates the model architecture. In Table 1, we detail the core components
of the architecture and their functions.

The information flow through these components follows a clear progression: the ASR module first
converts input speech into hidden representations, which are then transformed by the ASR2LLM
adapter into a format suitable for language understanding. The LLM processes these embeddings to
generate appropriate responses, which the LLM2T2C adapter then transforms into a representation
appropriate for speech synthesis. Finally, the T2C module converts these representations into
discrete speech codes, which the C2A module efficiently converts into output audio. This
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Figure 1: Neuroplex architecture showing the modular pipeline from input audio to response
audio. The system consists of specialized components (Feature Extractor, ASR, LLM, Text2Codes,
Codes2Audio) connected by learned adapters (ASR2LLM, LLM2T2C). Debug tokens can be
extracted at multiple stages for model inspection.

pipeline maintains a continuous representation space between components while providing discrete
inspection points for debugging.

2.2 Training Methodology

Neuroplex employs a multi-task training approach that combines specialized losses for each
component with adapter alignment objectives. The adapter networks are trained using a combination
of mean squared error and cosine similarity losses to ensure both magnitude and directional
alignment of embeddings:

Ladapter = α(1− cos(Zpred, Ztarget)) + (1− α)||Zpred − Ztarget||2 (1)

where Zpred represents the adapter’s output embeddings and Ztarget represents the target
embeddings from the subsequent module. This loss is applied to both the ASR2LLM (LASR2LLM )
and LLM2T2C (LLLM2T2C) adapters. The main components utilize standard cross-entropy losses
(LASR, LLLM , LT2C) for their respective tasks. These losses are combined into a weighted total
objective:

Ltotal = λASRLASR+λASR2LLMLASR2LLM+λLLMLLLM+λLLM2T2CLLLM2T2C+λT2CLT2C

(2)

Through different combinations of loss weights and parameter freezing strategies, Neuroplex can be
trained to exhibit distinct behavioral regimes:

• Cascade-like Regime: Setting λASR = λLLM = λT2C = 0 and training only adapter
parameters produces a strict cascade of frozen pre-trained components. Each module
maintains its original specialized behavior while adapters learn to bridge the representation
gaps. This regime preserves the full capabilities of each pre-trained model but limits
end-to-end optimization.
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Table 1: Core components of the Neuroplex architecture and their functions.
Component Description
ASR Pre-trained production ASR model based on an encoder-decoder

transformer architecture. Processes input audio features a ∈
RB×Tin×Din to produce hidden states xasr ∈ RB×Tasr×dasr .
Optional token outputs available for debugging.

ASR2LLM
Adapter

Sequence-to-sequence transformation that maps ASR hidden states to
LLM-compatible embeddings: xa2l = ga2l(xasr) ∈ RB×Ta2l×dllm .
Can be implemented through simple MLP transformations or more
complex s2s architectures.

LLM Pre-trained, instruction-tuned large language model that processes
embedded inputs through transformer blocks to generate contextual
hidden states xllm = fLLM (xa2l). Preserves instruction-following
capabilities for model control.

LLM2T2C Adapter Sequence-to-sequence transformation that maps LLM hidden states
to T2C-compatible embeddings: xl2t = gl2t(xllm) ∈ RB×Tl2t×dt2c .
Can be implemented through simple MLP transformations or more
complex s2s architectures.

T2C Autoregressive sequence model that maps text or text embeddings
to discrete speech codes. Generates a sequence of acoustic tokens
representing compressed speech features.

C2A Streaming convolutional decoder that efficiently reconstructs audio
waveforms from the discrete speech codes. Enables real-time audio
synthesis with low latency.

• End-to-end with Modular Specialization: Using balanced positive weights
(λASR, λLLM , λT2C > 0) and unfreezing all parameters allows components to adjust
while maintaining their specialized roles. This regime enables end-to-end optimization of
speech quality while preserving the interpretability of intermediate representations and the
LLM’s instruction-following capabilities. The model remains steerable and debuggable
through its modular structure.

• End-to-end Monolithic: Setting λT2C > 0 with all other weights zero transforms
Neuroplex into a monolithic speech-to-speech model. While this regime can potentially
achieve optimal speech output quality, it sacrifices modularity, interpretability, and
controlled generation through LLM instructions. The internal representations no longer
maintain specialized linguistic or acoustic meanings.

In early research prototypes, we have found success with a progressive three-stage training
curriculum. Stage 1 focuses on adapter pre-training, where the main components (ASR, LLM,
T2C) remain frozen while the adapter networks are trained using adapter losses and setting λASR =
λLLM = λT2C = 0. This establishes initial connectivity between the specialized modules through
the adaptation layers with the model exhibiting cascade-like behavior. Stage 2 maintains the frozen
state of the main components while training adapters with all loss terms active. This phase develops
robust representations across different voices and speaking styles. Finally, Stage 3 trains the model
in the modular specialization regime using conversational prompt/response data, with all model
weights unfrozen and using balanced loss terms. We find that the third stage effectively preserves
alignment between the model’s internal representations and the input and output audio, thus enabling
debuggability and steerability.

2.3 Inference Mechanics

Neuroplex operates in a continuous mode that enables direct propagation of semantic and
acoustic information through hidden state transformations, distinct from traditional cascaded
speech-to-speech systems that rely on discrete text representations. To illustrate the key differences,
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we first describe a baseline discrete inference mode before detailing Neuroplex’s primary continuous
operating mode.

In a discrete cascaded approach, inference proceeds by generating explicit tokens between
components: the ASR module produces text tokens which are then fed to the LLM, whose output
tokens are provided to the T2C module for speech synthesis. This introduces non-differentiable
sampling steps between modules and requires explicit decoding/encoding at each stage.

In contrast, Neuroplex’s continuous mode maintains hidden state representations throughout the
pipeline, enabling direct propagation of information between components. The inference process
proceeds as follows:

1. The ASR module processes input audio features a ∈ RB×Tin×Din to produce hidden states
xasr. While text tokens can be optionally decoded for debugging, the primary forward path
maintains the continuous representation.

2. The ASR2LLM adapter transforms these hidden states into LLM-compatible embeddings:
xa2l = ga2l(xasr). This transformation preserves semantic content while adjusting the
representation dimensionality and distribution.

3. The LLM processes these embeddings directly, generating hidden states xllm =
fLLM (xa2l) that encode the response. Again, text tokens can be optionally decoded for
inspection without affecting the primary pipeline.

4. The LLM2T2C adapter converts LLM hidden states into T2C-compatible embeddings:
xl2t = gl2t(xllm), maintaining the continuous flow of information.

5. Finally, the T2C module converts these embeddings into discrete acoustic codes, which the
C2A module synthesizes into output audio.

This continuous inference mode offers several advantages: it eliminates the need for intermediate
text generation, maintains end-to-end differentiability, and potentially preserves richer semantic and
acoustic information that might be lost in discrete token representations. The optional debug tokens
at ASR and LLM stages enable system monitoring and validation without disrupting the primary
continuous pipeline.

3 Model Analysis and Demonstrations

In this section we report initial results from a research prototype of Neuroplex trained to
question-answering tasks. We utilized the three-stage training approach described in Section 3.2.
The first two stages trained the model on a large-scale multispeaker dataset, focusing first on
adapter pre-training and then on scaled multi-speaker refinement. For the final multi-task fine-tuning
stage, we trained the model on a synthetically generated dataset comprising prompts and responses
created using an internal Deepgram TTS model. This prototype demonstrates single-turn dialogue
capabilities in question-answering scenarios.

3.1 Prompt/Response Samples

In this section we present a collection of inference examples from the Neuroplex prototype. For these
examples we generated synthetic audio queries from pre-written text prompts using a Deepgram TTS
model. We then fed these queries to the Neuroplex model and generated audio responses. While
generating the responses, we captured ”debug traces” from the model by decoding the ASR and
LLM internal representations to ASR Debug Tokens and LLM Debug Tokens, respectively. These
tests allow us to gauge to extent of alignment between the model’s internal representations and the
input and output audio.

As shown in Table 2, the ASR Debug Tokens identically reproduce the content of the input audio
queries, while the LLM Debug Tokens show precise alignment with the content of the output audio
responses. This alignment demonstration confirms that the Neuroplex model is debuggable, which
is a key model property needed in real-life deployments.
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Table 2: Comparison of Input/Response Content with their respective ASR and LLM Debug Tokens

Input Content ASR Debug Tokens Response Content LLM Debug Tokens
What qualities do you
value most in a partner?

[’What’, ’ qualities’, ’
do’, ’ you’, ’ value’,
’ most’, ’ in’, ’ a’, ’
partner’, ’?’]

For me, trust and
empathy are crucial.
They make everything
else fall into place
smoothly.

[’For’, ’ me’, ’,’,
’ trust’, ’ and’, ’
empathy’, ’ are’, ’
crucial’, ’.’, ’ They’, ’
make’, ’ everything’, ’
else’, ’ fall’, ’ into’, ’
place’, ’ smoothly’, ’.’]

Any tips for slicing
meat thinly like they do
at delis?

[’Any’, ’ tips’, ’ for’,
’ sl’, ’icing’, ’ meat’,
’ thin’, ’ly’, ’ like’, ’
they’, ’ do’, ’ at’, ’ del’,
’is’, ’?’]

Use a sharp knife
and cut against the
grain, then slice at a
45-degree angle for the
best texture.

[’Use’, ’ a’, ’ sharp’, ’
knife’, ’ and’, ’ cut’, ’
against’, ’ the’, ’ grain’,
’,’, ’ then’, ’ slice’, ’ at’,
’ a’, ’ ’, ’45’, ’-degree’,
’ angle’, ’ for’, ’ the’, ’
best’, ’ texture’, ’.’]

The Greeks
were pioneers in
architectural design,
right?

[’The’, ’ Gree’, ’ks’, ’
were’, ’ pione’, ’ers’,
’ in’, ’ architectural’, ’
design’, ’,’, ’ right’, ’?’]

Certainly, their use of
columns, arches, and
symmetry set the stage
for countless modern
designs

[’Certainly’, ’,’, ’ their’,
’ use’, ’ of’, ’ columns’,
’,’, ’ arch’, ’es’, ’,’,
’ and’, ’ symmetry’, ’
set’, ’ the’, ’ stage’,
’ for’, ’ countless’, ’
modern’, ’ designs’]

Can grassland fires
be linked to climate
change?

[’Can’, ’ grass’, ’land’,
’ fires’, ’ be’, ’ linked’,
’ to’, ’ climate’, ’
change’, ’?’]

Yes, increased
temperatures and
dry conditions increase
the frequency and
intensity of wildfires.

[’Yes’, ’,’, ’ increased’,
’ temperatures’, ’ and’,
’ dry’, ’ conditions’,
’ increase’, ’ the’,
’ frequency’, ’ and’,
’ intensity’, ’ of’, ’
wildfires’, ’.’]

Chess is a game I’ve
always admired. Do
you play often?

[’Ch’, ’ess’, ’ is’, ’ a’,
’ game’, ’ I’, ”’ve”, ’
always’, ’ adm’, ’ired’,
’.’, ’ Do’, ’ you’, ’
play’, ’ often’, ’?’]

I do! I love the
competitive and
strategic depth.
Have you beaten
any challenging stages?

[’I’, ’ do’, ’!’, ’ I’,
’ love’, ’ the’, ’
competitive’, ’ and’, ’
strategic’, ’ depth’, ’.’, ’
Have’, ’ you’, ’ beaten’,
’ any’, ’ challenging’, ’
stages’, ’?’]

I just joined a local
book club. Do you
enjoy book clubs?

[’I’, ’ just’, ’ joined’,
’ a’, ’ local’, ’ book’,
’ club’, ’.’, ’ Do’, ’
you’, ’ enjoy’, ’ book’,
’ clubs’, ’?’]

Yes, I do! They’re a
fantastic way to meet
like-minded people and
discuss what interests.

[’Yes’, ’,’, ’ I’, ’ do’,
’!’, ’ They’, ”’re”, ’
a’, ’ fantastic’, ’ way’,
’ to’, ’ meet’, ’ like’,
’-minded’, ’ people’,
’ and’, ’ discuss’, ’
what’, ’ interests’, ’.’]

How do you handle the
social pressure of being
’always on’?

[’How’, ’ do’, ’ you’,
’ handle’, ’ the’, ’
social’, ’ pressure’, ’
of’, ’ being’, ” ’”, ’al’,
’ways’, ’ on’, ”’”, ’?’]

Learning to say no and
setting boundaries has
been key for me. It
reduces that pressure
significantly.

[’Learning’, ’ to’, ’
say’, ’ no’, ’ and’, ’
setting’, ’ boundaries’,
’ has’, ’ been’, ’
key’, ’ for’, ’ me’,
’.’, ’ It’, ’ reduces’,
’ that’, ’ pressure’, ’
significantly’, ’.’]

What are the main
barriers to achieving
sustainability in
business?

[’What’, ’ are’, ’ the’,
’ main’, ’ barriers’,
’ to’, ’ achieving’, ’
sustainability’, ’ in’, ’
business’, ’?’]

Barriers include
financial constraints,
lack of expertise,
regulatory hurdles, and
cultural resistance to
change.

[’Bar’, ’riers’, ’
include’, ’ financial’, ’
constraints’, ’,’, ’ lack’,
’ of’, ’ expertise’, ’,’, ’
regulatory’, ’ hurdles’,
’,’, ’ and’, ’ cultural’,
’ resistance’, ’ to’, ’
change’, ’.’]
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Figure 2: Visualization of the ASR2LLM adapter’s latent space. The scatter plot shows t-SNE
reduced embeddings of 15,000 acoustically perturbed variations of the word “hello”, interpolated
between three anchor recordings. Colors indicate the interpolation weights between anchor points.
The continuous distribution demonstrates preservation of acoustic variations that would collapse to
a single point in discrete cascade systems.

3.2 Latent Space Visualization

In order to study the properties of the Neuroplex latent space, we performed an analysis of embeddings at the
ASR2LLM adapter output. We generated a controlled dataset by recording three anchor utterances of the word
”hello” and creating 15,000 variations through interpolation between these anchors, applying minimal acoustic
perturbations including noise, gain adjustments, and polarity inversions. The embeddings were extracted from
the adapter output for samples where the ASR component correctly predicted the target token, then reduced to
three dimensions using t-SNE for visualization. The resulting scatter plot reveals a rich latent manifold with
distinct clusters and smooth transitions between acoustic variations of the same word, demonstrating that the
continuous pipeline preserves subtle prosodic and acoustic information that would be lost in traditional cascade
systems where identical transcribed tokens collapse to a single point.

4 Summary and Future Work

We have presented Neuroplex, a modular speech-to-speech architecture that combines pre-trained components
through learned adapter networks. Through a carefully designed training curriculum and flexible loss
weighting scheme, Neuroplex achieves end-to-end optimization while maintaining component specialization
and interpretability. Our research prototype demonstrates successful question-answering capabilities in
single-turn dialogue scenarios, with the model exhibiting coherent language understanding and high-quality
speech synthesis.

A key advantage of Neuroplex’s adapter-based design is its ability to bridge between specialized modules
while operating directly on continuous hidden state representations. This approach preserves rich acoustic
information throughout the pipeline while enabling precise control over model behavior through the LLM
component. The architecture supports both pure end-to-end operation for optimal performance and modular
inspection for debugging and monitoring.
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Future work will focus on extending the model to complex multi-turn dialogues, real-time processing, and
cross-lingual scenarios, while optimizing the architecture for scaled deployment. The modular yet end-to-end
trainable nature of Neuroplex provides a promising foundation for building scalable, controllable voice agent
systems.
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