
1

Alice Ryhl
Software Engineer @ Google

Rust in the
Linux Kernel

2

INTRODUCTION

● Rust for Linux was started in 2020.

● The first Rust code was merged into Linux in
December 2022.

● There are several Rust drivers, but none have been
merged yet.

3

Rust in the Linux Kernel

Why use Rust in
the Kernel?

?? ?

4

Why use Rust in the Kernel?

If you have a very large (millions of lines of code)
codebase, written in a memory-unsafe programming
language (such as C or C++), you can expect at least 65%
of your security vulnerabilities to be caused by memory
unsafety.

— Alex Gaynor

Rust in the Linux Kernel

5

Why use Rust in the Kernel?

Also true for the Kernel:

“65% of CVEs behind the last six months of Ubuntu
security updates to the Linux kernel have been memory
unsafety.”

Rust in the Linux Kernel

6

Most vulnerabilities are in new code
Rust in the Linux Kernel

7

Empirical evidence that Rust makes a difference
Rust in the Linux Kernel

8

Rust in the Linux Kernel

Rust projects in
the Kernel

+

9

Rust projects in the Kernel

● Android Binder driver

● PuzzleFS and TarFS

● Asahi Linux GPU driver

● NVMe and Null block driver

● Asix PHY ethernet driver

Rust in the Linux Kernel

10

Rust in the Linux Kernel

Android Binder
driver Process A

Process B

11

Challenges that Binder faces
Rust in the Linux Kernel

High complexity Accumulated technical debt Security issues

High complexity makes it difficult to resolve tech debt
without causing security issues.

12

Security issues in Binder
Rust in the Linux Kernel

High vulnerability density Not getting better Security criticalRisk is not theoretical

1 2 3 4

Binder's density is around 3.1
vulnerabilities per kLOC.

Binder has averaged ~3
high/critical severity

vulnerabilities per year over
the past 6 years.

We are aware of exploits for
about half of the

vulnerabilities in Binder.

Even Android’s most
de-privileged sandboxes

have direct access to Binder.

13

Rust Binder
Rust in the Linux Kernel

Feature parity Passes tests Promising performance

Implements all features in C
Binder.

(except for some debugging facilities)

Passes all Binder tests in AOSP.

Can boot a device and run a
variety of apps without issues.

On a simple benchmark, drivers
have similar performance.

Still a lot of work to do.

14

Rust Binder benchmarks
Rust in the Linux Kernel

15

Rust in the Linux Kernel

How is Kernel
Rust different?

+ =
?

16

Rust in the Linux Kernel

Wrapping C

17

Wrapping C

● Kernel drivers need to access many different C apis.

● For now, the driver author must write the C wrapper.

● Requires a good understanding of unsafe Rust.

Rust in the Linux Kernel

18

Wrapping C
Rust in the Linux Kernel

19

Workqueue example in Binder
Rust in the Linux Kernel

impl workqueue::WorkItem for Process {
 type Pointer = Arc<Process>;

 fn run(me: Arc<Self>) {
 let defer;
 {
 let mut inner = me.inner.lock();
 defer = inner.defer_work;
 inner.defer_work = 0;
 }

 if defer & PROC_DEFER_FLUSH != 0 {
 me.deferred_flush();
 }
 if defer & PROC_DEFER_RELEASE != 0 {
 me.deferred_release();
 }
 }
}

No unsafe needed in Binder!

20

C wrappers needed by Binder

● Collections: Linked List, red/black tree, xarray.

● Synchronization: Mutex, SpinLock, CondVar.

● Memory management: Page manipulation.

● Files: Manipulation of open files.

● Workqueue: Execute code in the background.

Rust in the Linux Kernel

21

Unsafe code in Binder
Rust in the Linux Kernel

Safe Rust in Binder

Unsafe Rust in Binder

22

What about C wrappers?
Rust in the Linux Kernel

Safe Rust in Binder

Unsafe Rust in Binder

Abstractions

You only have to get them right once,
across all drivers.

23

Fallible allocations
Rust in the Linux Kernel

We can’t just crash if we
run out of memory!

Box::try_new(value)?

24

Fallible allocations

● Must be careful to clean up on allocation failure.
● To make operations infallible, we allocate memory

before we need it.

● Linked list > Vec

Rust in the Linux Kernel

25

Fallible allocations

● Must be careful to clean up on allocation failure.

● To make operations infallible, we allocate memory
before we need it.

Rust in the Linux Kernel

DESTROYCREATE

Fallible
Allocate here

Not fallible!
Use allocation here

26

Fallible allocations example in Binder
Rust in the Linux Kernel

struct Allocation<T> {
 is_oneway: bool,
 pid: Pid,
 data: Option<T>,
 free_res: RBTreeNodeReservation<FreeKey, ()>,
}

27

Fallible allocations

● Must be careful to clean up on allocation failure.

● To make operations infallible, we allocate memory
before we need it.

● Linked list > Vec

Rust in the Linux Kernel

28

Rust in the Linux Kernel

And allocating memory
might sleep!

You can’t
always sleep

29

You can’t always sleep

Two types of mutex:

● Mutex

○ lock() will sleep, allows sleeping

● Spinlock

○ lock() will not sleep, does not allow sleeping

Rust in the Linux Kernel

30

Get or insert new
Rust in the Linux Kernel

Look for value Done!
If already exists

Allocate memory
for new value

If missing

Insert new value

If inserted

31

Get or insert new
Rust in the Linux Kernel

Look for value Done!
If already exists

Allocate memory
for new value

If missing

Insert new value Use existing
value

If inserted

If already exists

32

Get or insert new
Rust in the Linux Kernel

Look for value Done!
If already exists

Allocate memory
for new value

If missing

Insert new value Use existing
value

If inserted

If already exists

In Binder, I had to write this many times!

33

You can’t always sleep example in Binder
Rust in the Linux Kernel

fn get_thread(self: ArcBorrow<'_, Self>, id: i32) -> Result<Arc<Thread>> {
 {
 let inner = self.inner.lock();
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }
 }

 // Allocate a new `Thread` without holding any locks.
 let ta = Thread::new(id, self.into())?;
 let node = RBTree::try_allocate_node(id, ta.clone())?;

 let mut inner = self.inner.lock();

 // Recheck. It's possible the thread was created while we were not holding the lock.
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }

 inner.threads.insert(node);
 Ok(ta)
}

34

You can’t always sleep example in Binder
Rust in the Linux Kernel

fn get_thread(self: ArcBorrow<'_, Self>, id: i32) -> Result<Arc<Thread>> {
 {
 let inner = self.inner.lock();
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }
 }

 // Allocate a new `Thread` without holding any locks.
 let ta = Thread::new(id, self.into())?;
 let node = RBTree::try_allocate_node(id, ta.clone())?;

 let mut inner = self.inner.lock();

 // Recheck. It's possible the thread was created while we were not holding the lock.
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }

 inner.threads.insert(node);
 Ok(ta)
}

35

You can’t always sleep example in Binder
Rust in the Linux Kernel

fn get_thread(self: ArcBorrow<'_, Self>, id: i32) -> Result<Arc<Thread>> {
 {
 let inner = self.inner.lock();
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }
 }

 // Allocate a new `Thread` without holding any locks.
 let ta = Thread::new(id, self.into())?;
 let node = RBTree::try_allocate_node(id, ta.clone())?;

 let mut inner = self.inner.lock();

 // Recheck. It's possible the thread was created while we were not holding the lock.
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }

 inner.threads.insert(node);
 Ok(ta)
}

36

You can’t always sleep example in Binder
Rust in the Linux Kernel

fn get_thread(self: ArcBorrow<'_, Self>, id: i32) -> Result<Arc<Thread>> {
 {
 let inner = self.inner.lock();
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }
 }

 // Allocate a new `Thread` without holding any locks.
 let ta = Thread::new(id, self.into())?;
 let node = RBTree::try_allocate_node(id, ta.clone())?;

 let mut inner = self.inner.lock();

 // Recheck. It's possible the thread was created while we were not holding the lock.
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }

 inner.threads.insert(node);
 Ok(ta)
}

37

You can’t always sleep example in Binder
Rust in the Linux Kernel

fn get_thread(self: ArcBorrow<'_, Self>, id: i32) -> Result<Arc<Thread>> {
 {
 let inner = self.inner.lock();
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }
 }

 // Allocate a new `Thread` without holding any locks.
 let ta = Thread::new(id, self.into())?;
 let node = RBTree::try_allocate_node(id, ta.clone())?;

 let mut inner = self.inner.lock();

 // Recheck. It's possible the thread was created while we were not holding the lock.
 if let Some(thread) = inner.threads.get(&id) {
 return Ok(thread.clone());
 }

 inner.threads.insert(node);
 Ok(ta)
}

38

You can’t always sleep

We have a custom linter for
catching sleeps in atomic

contexts.

Rust in the Linux Kernel

39

Rust in the Linux Kernel

Pinning is not
enough

40

Pinning is not enough

Normal pinning:

● Before first use, value may
move around.

● Values are pinned on first
use.

Rust in the Linux Kernel

Create new value

Initially, the value is
not pinned

On first use, the
value is pinned

41

Pinning is not enough

● We use C types defined by
the Kernel

● Those C types require the
value to be pinned
immediately.

● Done using special macro.

Rust in the Linux Kernel

In-place initialization

On creation, the
value is pinned

42

Pin-init example in Binder
Rust in the Linux Kernel

Arc::pin_init(pin_init!(Thread {
 id,
 process,
 inner <- kernel::new_spinlock!(ThreadInner::new()),
 work_condvar <- kernel::new_poll_condvar!(),
 links <- ListLinks::new(),
 links_track <- AtomicListArcTracker::new(),
}))

43

Pin-init example in Binder
Rust in the Linux Kernel

Arc::pin_init(pin_init!(Thread {
 id,
 process,
 inner <- kernel::new_spinlock!(ThreadInner::new()),
 work_condvar <- kernel::new_poll_condvar!(),
 links <- ListLinks::new(),
 links_track <- AtomicListArcTracker::new(),
}))

44

Pin-init example in Binder
Rust in the Linux Kernel

Arc::pin_init(pin_init!(Thread {
 id,
 process,
 inner <- kernel::new_spinlock!(ThreadInner::new()),
 work_condvar <- kernel::new_poll_condvar!(),
 links <- ListLinks::new(),
 links_track <- AtomicListArcTracker::new(),
}))

45

Unstable
compiler
features

Rust in the Linux Kernel

#![feature(allocator_api)]
#![feature(coerce_unsized)]
#![feature(dispatch_from_dyn)]
#![feature(new_uninit)]
#![feature(offset_of)]
#![feature(ptr_metadata)]
#![feature(receiver_trait)]
#![feature(unsize)]

46

Custom Arc

You cannot implement your
own Arc in stable Rust.

Rust in the Linux Kernel

47

Custom Arc

Why use a custom Arc?

● Uses the Kernel’s refcounting logic.

○ Don’t abort on overflow!
● No weak references.

● All Arcs are pinned.

Rust in the Linux Kernel

48

Unstable is also needed for:

● Custom Arc

● Fallible allocations

● Const evaluation

● offset_of! macro

Rust in the Linux Kernel

49

Unstable compiler features
Rust in the Linux Kernel

Unstable features is a problem
for all embedded Rust code.

50

Call to action

Let’s get embedded Rust off
nightly Rust.

Rust in the Linux Kernel

51

Thank you for
listening

52

Alice Ryhl
alice@ryhl.io

