PAVEX

Re-imagining Rust backend development

Luca Palmieri
Y

Luca Palmieri

Principal Engineering Consultant
@ Mainmatter

w @algo_luca
https://Ipalmieri.com

__

#Build your own JIRA with Rust

1
You will be working through a series of test-driven exercises, or koans, to learn Rust while building your own JIRA |
clone!

5x Faster Rust Docker Builds with cargo-chef

October 23, 2020 - 2344 words - 12 min

Wiremock: async HTTP mocking to test Rust
applications

April 13, 2020 - 1367 words - 7 min

ZERO TO PRODUCTION IN RUST

AN OPINIONATED INTRODUCTION TO BACKEND DEVELOPMENT

LUCA PALMIERI

https://zero2prod.com

Agenda

* Rust: are we backend yet?
W Pavex

@%; A look under the hood

Anatomy of a backend

What does a modern backend look like?

It depends™

There is a varied zoology,
depending on the dimensions we are looking at

By size

[Microservice } — [Macroservice } — [Monolith }

By interface

[REST JSON } [gRPC } [GraphQL }

By lifecycle

Long-lived Short-lived
(“serverful”) (serverless)

By client

[Internal-facing } [External-facing }

By volume

1000 reqg/s
))
[10 req/s } [100 reqg/s } [and beyond }

By team size

[Solo developer} — [Team } — [Multiple teams }

They all share some challenges,
but each combination has its unique requirements

To make things worse,
projects don’t stand still

A prototype becomes successful

You hire a bigger team to keep up with
an application that’s growing in complexity

Your company is acquired

All your services now need to migrate to gRPC,
the technology your acquirer has standardized on

Your product is growing like crazy

You need to migrate your key workloads
away from serverless to keep costs under control

You must be careful when choosing
the technology stack you’ll be building on

Your foundation must be specialised enough
to unlock productivity

But flexible enough
to evolve with your requirements

Rust: are we backend yet?

Is Rust a good choice
for building backend systems?

Yes*

Performance

Team collaboration

Supported platforms

Nonetheless,
Rust is not a mainstream choice
for backend development

Rust has seen limited success
in some backend niches

Rust’s backend niches:

—> High performance requirements

Rust’s backend niches:

-> High performance requirements
=> High infrastructure footprint

Rust’s backend niches:

=> High performance requirements
=> High infrastructure footprint
=> High reliability requirements

“People come to Rust for its performance,
but they stick around for its reliability”

What’s holding us back
from mainstream usage?

Rust’s weaknesses for backend:

-> Limited talent pool with professional experience

Rust’s weaknesses for backend:

-> Limited talent pool with professional experience
—> A Lego-like ecosystem

async/await was stabilised 4 years ago,
at the end of 2019

On those foundations, in 4 years,
the Rust community has built
a vast collection of high-quality libraries

The collection is perhaps...
too vast

Beginners are overwhelmed

Too many choices to make,
too early in the journey

Complexity compounds:
each library needs to be good enough on its own
and interoperate with all the other ones you chose

We need a curated set of crates,
with a coordinated versioning policy
and a comprehensive feature set

In other words,
we need a backend-focused distribution

> That’s impossible!

That’s exactly what every single company
using Rust ends up building
once they scale beyond toy examples

What async executor should we use?
What web framework?
What database driver?
What telemetry libraries?

Sometimes it works out,
sometimes it doesn’t

Rust’s weaknesses for backend:

-> Limited talent pool with professional experience
=> A Lego-like ecosystem
-> A less-than-optimal learning curve

There’s a tension in the Rust ecosystem

On one side,
we want great ergonomics

On the other side, we want to
ensure correctness at compile-time

On top of that,
we are building on top of async Rust

That’s an explosive mix

A beginner has to digest advanced Rust constructs
as soon as they start their first web project

[

insert screenshot of a compiler error
that fills an entire terminal screen mentioning
traits you’ve never seen before, Send, Sync
and tuples of various lengths

]

That’s a recipe for churn

An experienced mentor can mitigate these issues,
but that’s a luxury that few have available

That's why
Rust is not a mainstream language
for backend development

But it could be!
And | want it to be!

PAVEX

Pavex is a new framework
for building Rust APIs

@

PAVEX

It was born as an experiment,
at the end of 2022

PAVEX

Can we offer a better DX,
if we choose a radically different approach?

@

PAVEX

Show, don’t tell: demo time!

@

PAVEX

You have seen some of
Pavex core tenets in action

PAVEX

1
High-quality error messages
that speak the language of backend development

@

PAVEX

‘rustlab::routes::greeting::greet” 1is trying to extract route parameters using
"RouteParams<rustlab::routes::greeting: :GreetParams> .

Every struct field in “rustlab::routes::greeting::GreetParams must be named after one of the route parameters that appear in
“/api/greet/:first_name/:last_name :

- “first_name”

- “last_name’

There is no route parameter named “name , but there is a struct field named “name” in
“rustlab::routes::greeting::GreetParams . This is going to cause a runtime error!

"/api/greet/:first_name/:last_name",

[rustlab/src/blueprint.rs:22:1]
{_ fl(crate::routes::greeting: :greet),

- The request handler asking for “RouteParams<rustlab::routes::greeting::GreetParams>"

,L);

help: Remove or rename the fields that do not map to a valid route parameter.

Errors must be caught at compile-time
where possible

@

PAVEX

This route path, “/api/greet/:name/:last_name’, conflicts with the path of another route you already registered, "/api/

greet/:first_name/:last_name".

GET,
"/api/greet/:name/:last_name",

- The problematic path

fl(crate::routes::greeting::greet),

([rustlab/src/blueprint.rs:27:1]

PAVEX

Boring Rust is enough
for the vast majority of tasks

@

PAVEX

pub async fn reject_anonymous<T>(next: Next<T>, user_agent: UserAgent) — Response

where

IntoFuture<Output = Response>,

if let UserAgent::Anonymous = user_agent
return Response:: forbidden() .box_body();

next.await

PAVEX

4
/.

Pavex’s problem domain is building APIs

@

PAVEX

It is not limited to understanding the HTTP protocol,

routing requests or managing state

PAVEX

It is all those things, and more:
auth, configuration, testing, client-generation, etc.

@

PAVEX

We want to look at the end-to-end process
to make it easier to build high-quality applications

@

PAVEX

We won’t get there overnight:
we are starting from the foundations
that’ll make it possible

@

PAVEX

A look under the hood

Oﬁl N |

How does Pavex actually work?

@

PAVEX

0;, ow

@ glycoliza

why does every every web framework describe itself as, like, "a simple,

lightweight, and easy to use web framework" and then you scroll to the
bottom of the README and it's like "(powered by the blood of forsaken
children)"

PAVEX

You fill out a
declarative Blueprint
for your application

@

PAVEX

pub fn blueprint() — Blueprint {
let mut bp = Blueprint::new();

register_common_constructors(&mut bp);

add_telemetry_middleware(&mut bp);

bp.wrap(fl(crate::user_agent::reject_anonymous));
.constructor(
f!(crate::user_agent::UserAgent:: extract),
Lifecycle:: RequestScoped,

.route(5 '‘/api/ping f!(crate::routes::status::ping));
.route(

GET,

fl(crate::routes::greeting

What is that f! macro doing?

@

PAVEX

°g, ow

#[macro_export]
macro_rules! f {
($p:expr) => {{
$crate::blueprint::reflection::RawCallable {
import_path: stringify!($p),
registered_at: ::std::env!("CARGO_PKG_NAME")

PAVEX

bp.route(GET, "/api/ping", f!(crate::routes::status::ping));

PAVEX

bp.route(
GET,
"/api/ping",
RawCallable {
import_path: "crate::routes
registerd_at: "rustlab"

::status: :ping",

PAVEX

Remember our tenets:
we want high-quality error messages
that speak the language of backend development

@

PAVEX

w \ @
o

We don’t rely on trait bounds
for compile-time static analysis

@

PAVEX

LN

impl Blueprint {

pub fn route(
&mut self,
method_guard: MethodGuard,
path: & 5
callable: RawCallable
) -> Route {

}

PAVEX

Validation and analysis are deferred
to Pavex’s transpiler

@

PAVEX

pavex generate [...]

PAVEX

05, ’ A

The Blueprint is serialized and
passed to Pavex’s transpiler as input

@

PAVEX

constructors: [

(

constructor: (
callable: (
registered_at: "rustlab",
import_path: "crate::user_age UserAgent: tracty,

lifecycle: RequestScoped,
cloning_strategy: None,
error_handle None,

routes:
(
path: "/api/ping",
method_guard: (
allowed_methods: [
= GETR
I's
),
request_handler: (
callable: (
registered_at: "rustlab",
import_path: "crate::routes tatus::ping",
)5
location: (
line:
colum 5
file: "rustlab/src/blueprint.rs",
),
),
error_handler: None,

)s

The transpiler is where
all the compile-time validation takes place

@

PAVEX

If there are no errors,
the transpiler... transpiles!

@

PAVEX

It generates a new a crate
from your Blueprint:
the server SDK

PAVEX

The code in the server SDK
combines everything together:
request handlers, constructors and middlewares

@

PAVEX

Let’'s explore the generated code
to get an understanding of what it entails

@

PAVEX

At the top level,
the server SDK exposes two key items:
run and ApplicationState

@

PAVEX

With those two items,
you can assemble the server binary,
the executable that will serve incoming requests

@

PAVEX

o=

is used to generate

is imported by

PAVEX

is used to generate

PAVEX

N

Server SDK
(generated)

PAVEX

Why do we need three crates?
Why don’t we just use a macro, or a build script?

@

PAVEX

Pavex’s secret sauce is
a compile-time reflection engine

PAVEX

What inputs does this request handler take?
What output does it return?
Do we have a constructor registered for this type?

@

PAVEX

W \
o=

We want to answer those questions,
and we want to do it at compile-time

@

PAVEX

Macros in Rust operate on tokens,
they have no access to type-level information

@

PAVEX

const : &str "SELECT * FROM USERS";

The macro can’t resolve this!

PAVEX

Macros won’t cut it,
what can we use?

PAVEX

The reflection engine

-

Pavex is powered by rustdoc-json

7

Where does your mind go
when | say rustdoc?

7

Tokio also has unstable support for some additional WASM features. This requires the use of the tokio_unstable flag.

Using this flag enables the use of tokio: :net on the wasm32-wasi target. However, not all methods are available on the
networking types as WASI currently does not support the creation of new sockets from within WASM. Because of this, sockets must

Crate tokio

currently be created via the FromRawFd trait.

Version 1.26.0
Modules
All Items
Types which are documented locally in the Tokio crate, but does not actually live here.
Modules fs Asynchronous file and standard stream adaptation.
Macros 0 Traits, helpers, and type definitions for asynchronous I/O functionality.
TCP/UDP/Unix bindings for tokio.
)rocess An implementation of asynchronous process management for Tokio.

Functions

Attribute Macros
process

The Tokio runtime.

Crates al signal Asynchronous signal handling for Tokio.

tokio m Due to the Stream trait’s inclusion in std landing later than Tokio’s 1.0 release, most of the Tokio stream utilities
have been moved into the tokio-stream crate.

Rust crate — rustdoc — HTML

‘-

++ JSON #

Same information as docs.rs,
in @ machine-parsable format!

Currently on nightly,
introduced in an RFC from June 2020

-

cargo +nightly rustdoc --lib -- \
-Z unstable-options --output-format=json

Let’s look at an example:
a struct from cargo-chef

7

TargetArgs {

"0:12:1620": {
"0:12:1620",
: 0,
"TargetArgs",
"public",
“struct",
0 q
2 q
: {

20
"0:13:1741",

1,
b
}s
"generics": {},
3l
"a:2:2715:2375-0:12

If you follow the ids...

L0 RRLE ol L7 B R |
"0:13:1741",
: 0,
"benches",
"public",
"struct_field",

g :

"primitive”,
IIbOO'LII

You can use rustdoc-types to parse
the raw JSON into Rust structs

@

Struct rustdoc_types::

pub struct Path {
pub name:
pub -id:
pub args:

Fields

name:
di
args: < <
Generic arguments to the type

std::borrow: :Cow<'static, str>
AAAAAAAAAAAAAAN

this part

Rustdoc’s JSON format is enabling
a new generation of Rust tooling

-

cargo-semver-checks

Lint your crate APl changes for semver violations.

e Quick Start
e FAQ
e Contributing

Quick Start

$ cargo install cargo-semver-checks --locked

Check whether it's safe to release the new version:
$ cargo semver-checks check-release

cargo-check-external-types

Static analysis tool that detects external types used in a Rust library's public
API. Configuration can be provided to allow certain external types so that this
tool can be used in continuous integration so that types don't unintentionally
make it into the library's API. It can also output a Markdown table of the
external types it found.

PAVEX

pub(crate) fn blueprint() -> Blueprint {
let mut bp = Blueprint::new();
bp.constructor(f!(crate::AuthConfig::encoding_key), Singleton);

bp.route(GET, "/user", f!(crate::routes::get_user));
bp.route(PUT, "/user", f!(crate::routes::update_user));

bp.route(POST, "/users", fl!(crate::routes::signup))
.error_handler(f!(crate::routes::SignupError::into_response));
bp.route(POST, "/users/login", f!(crate::routes::login))
.error_handler(f!(crate::routes::LoginError::into_response));
bp

Given a fully qualified path:

> Determine the crate it was defined into
> Generate JSON docs for that crate

=> Look up type information

Combining everything together,
we build a call graph for each request handler

‘@

/
@th(&Requcst<Body>, Logger) -MD
Ty
@le(Request<Body>, PathBuf, Logger, HttpClient) -> IWD

The call graph is used for static analysis
and, at the end, to drive code generation

@

Wrapping up

You can move complexity around,
but you cannot eliminate it

@

PAVEX

Complexity has to live somewhere

@

PAVEX

We want Pavex to take on that complexity,
so that you don’t have to

@

PAVEX

| built a transpiler because | had to

@

PAVEX

Today we are just scratching the surface,
the foundation we’ll build on top of

@

PAVEX

Staged compilation opens up
a universe of possibilities!

@

PAVEX

Auto-instrumentation
Accurate OpenAPI specifications
Automatically exploit concurrency opportunities

Multiple deployment targets

PAVEX

“OK, OK, it's enough, you convinced me
This Pavex stuff looks super cool,
how do | install it?”

@

PAVEX

Pavex is not (yet) generally available

@

PAVEX

We are going to run a closed beta:
you can join the waiting list at
pavex.dev

@

PAVEX

:
Pavex is open source,
but it is a commercial project

PAVEX

Feel free to grab me in the hallway or at lunch,
happy to discuss further and give demos!

@

PAVEX

The End

Y

Luca Palmieri
¥ @algo_luca

All the beautiful Ferris illustrations
were created by Esther Arzola

https://biscuittowndesigns.com/welcome
https://biscuittowndesigns.com/welcome

Question time!

Y

Luca Palmieri
¥ @algo_luca

All the beautiful Ferris illustrations
were created by Esther Arzola

https://biscuittowndesigns.com/welcome
https://biscuittowndesigns.com/welcome

