
@algo_luca

Re-imagining Rust backend development

Luca Palmieri

Luca Palmieri

Principal Engineering Consultant
@ Mainmatter

@algo_luca
https://lpalmieri.com

https://zero2prod.com

Agenda

Rust: are we backend yet?

Pavex

A look under the hood

Anatomy of a backend

What does a modern backend look like?

It depends™

There is a varied zoology,
depending on the dimensions we are looking at

Microservice Macroservice Monolith

By size

REST JSON gRPC GraphQL

By interface

Long-lived
(“serverful”)

Short-lived
(serverless)

By lifecycle

Internal-facing External-facing

By client

10 req/s 100 req/s 1000 req/s
and beyond

By volume

Solo developer Team Multiple teams

By team size

They all share some challenges,
but each combination has its unique requirements

To make things worse,
projects don’t stand still

A prototype becomes successful

You hire a bigger team to keep up with
an application that’s growing in complexity

Your company is acquired

All your services now need to migrate to gRPC,
the technology your acquirer has standardized on

Your product is growing like crazy

You need to migrate your key workloads
away from serverless to keep costs under control

You must be careful when choosing
 the technology stack you’ll be building on

Your foundation must be specialised enough
to unlock productivity

But flexible enough
to evolve with your requirements

Rust: are we backend yet?

Is Rust a good choice
for building backend systems?

Rust: are we backend yet?

Yes*

Rust: are we backend yet?

Performance
✅

Rust: are we backend yet?

Team collaboration
✅

Rust: are we backend yet?

Supported platforms
✅

Rust: are we backend yet?

Nonetheless,
Rust is not a mainstream choice

for backend development

Rust: are we backend yet?

Rust has seen limited success
in some backend niches

Rust: are we backend yet?

➔ High performance requirements

Rust’s backend niches:

Rust: are we backend yet?

➔ High performance requirements
➔ High infrastructure footprint

Rust’s backend niches:

Rust: are we backend yet?

➔ High performance requirements
➔ High infrastructure footprint
➔ High reliability requirements

Rust’s backend niches:

Rust: are we backend yet?

“People come to Rust for its performance,
but they stick around for its reliability”

Rust: are we backend yet?

What’s holding us back
from mainstream usage?

Rust: are we backend yet?

➔ Limited talent pool with professional experience

Rust’s weaknesses for backend:

Rust: are we backend yet?

➔ Limited talent pool with professional experience
➔ A Lego-like ecosystem

Rust’s weaknesses for backend:

Rust: are we backend yet?

async/await was stabilised 4 years ago,
at the end of 2019

Rust: are we backend yet?
Lego-like ecosystem

On those foundations, in 4 years,
the Rust community has built

a vast collection of high-quality libraries

Rust: are we backend yet?
Lego-like ecosystem

The collection is perhaps…
too vast

Rust: are we backend yet?
Lego-like ecosystem

Beginners are overwhelmed

Rust: are we backend yet?
Lego-like ecosystem

Too many choices to make,
too early in the journey

Rust: are we backend yet?
Lego-like ecosystem

Complexity compounds:
each library needs to be good enough on its own
and interoperate with all the other ones you chose

Rust: are we backend yet?
Lego-like ecosystem

We need a curated set of crates,
with a coordinated versioning policy

 and a comprehensive feature set

Rust: are we backend yet?
Lego-like ecosystem

In other words,
we need a backend-focused distribution

Rust: are we backend yet?
Lego-like ecosystem

> That’s impossible!

Rust: are we backend yet?
Lego-like ecosystem

That’s exactly what every single company
using Rust ends up building

once they scale beyond toy examples

Rust: are we backend yet?
Lego-like ecosystem

What async executor should we use?
What web framework?
What database driver?

What telemetry libraries?
…

Rust: are we backend yet?
Lego-like ecosystem

Sometimes it works out,
sometimes it doesn’t

Rust: are we backend yet?
Lego-like ecosystem

➔ Limited talent pool with professional experience
➔ A Lego-like ecosystem
➔ A less-than-optimal learning curve

Rust’s weaknesses for backend:

Rust: are we backend yet?

There’s a tension in the Rust ecosystem

Rust: are we backend yet?
Sub-optimal learning curve

On one side,
we want great ergonomics

Rust: are we backend yet?
Sub-optimal learning curve

On the other side, we want to
ensure correctness at compile-time

Rust: are we backend yet?
Sub-optimal learning curve

On top of that,
we are building on top of async Rust

Rust: are we backend yet?
Sub-optimal learning curve

That’s an explosive mix

Rust: are we backend yet?
Sub-optimal learning curve

A beginner has to digest advanced Rust constructs
as soon as they start their first web project

Rust: are we backend yet?
Sub-optimal learning curve

[

insert screenshot of a compiler error
that fills an entire terminal screen mentioning
traits you’ve never seen before, Send, Sync

and tuples of various lengths

]

Rust: are we backend yet?
Lego-like ecosystem

That’s a recipe for churn

Rust: are we backend yet?
Sub-optimal learning curve

An experienced mentor can mitigate these issues,
but that’s a luxury that few have available

Rust: are we backend yet?
Sub-optimal learning curve

That’s why
Rust is not a mainstream language

for backend development

Rust: are we backend yet?
Sub-optimal learning curve

But it could be!
And I want it to be!

Rust: are we backend yet?
Sub-optimal learning curve

Pavex is a new framework
for building Rust APIs

It was born as an experiment,
at the end of 2022

Can we offer a better DX,
if we choose a radically different approach?

Show, don’t tell: demo time!

You have seen some of
Pavex core tenets in action

1⃣
High-quality error messages

that speak the language of backend development

2⃣
Errors must be caught at compile-time

where possible

3⃣
Boring Rust is enough

for the vast majority of tasks

4⃣
Pavex’s problem domain is building APIs

It is not limited to understanding the HTTP protocol,
routing requests or managing state

It is all those things, and more:
auth, configuration, testing, client-generation, etc.

We want to look at the end-to-end process
to make it easier to build high-quality applications

We won’t get there overnight:
we are starting from the foundations

that’ll make it possible

A look under the hood

How does Pavex actually work?

You fill out a
declarative Blueprint

for your application

What is that f! macro doing?

Remember our tenets:
we want high-quality error messages

that speak the language of backend development

We don’t rely on trait bounds
for compile-time static analysis

Validation and analysis are deferred
to Pavex’s transpiler

pavex generate [...]

The Blueprint is serialized and
passed to Pavex’s transpiler as input

The transpiler is where
all the compile-time validation takes place

If there are no errors,
the transpiler… transpiles!

It generates a new a crate
from your Blueprint:

the server SDK

The code in the server SDK
combines everything together:

request handlers, constructors and middlewares

Let’s explore the generated code
to get an understanding of what it entails

At the top level,
the server SDK exposes two key items:

run and ApplicationState

With those two items,
you can assemble the server binary,

the executable that will serve incoming requests

Blueprint Server SDK
(library crate)

Server
(binary crate)

is used to generate

is imported by

Blueprint Server SDK
(library crate)

Server
(binary crate)

is used to generate

API tests

Blueprint
(handwritten)

Server SDK
(generated)

Server
(handwritten)

API tests
(handwritten)

Why do we need three crates?
Why don’t we just use a macro, or a build script?

Pavex’s secret sauce is
a compile-time reflection engine

What inputs does this request handler take?
What output does it return?

Do we have a constructor registered for this type?
…

We want to answer those questions,
and we want to do it at compile-time

Macros in Rust operate on tokens,
they have no access to type-level information

The macro can’t resolve this!

Macros won’t cut it,
what can we use?

The reflection engine

Pavex is powered by rustdoc-json

Where does your mind go
when I say rustdoc?

Rust crate rustdoc HTML

Rust crate rustdoc

HTML

✨ JSON ✨

Same information as docs.rs,
in a machine-parsable format!

Currently on nightly,
introduced in an RFC from June 2020

Let’s look at an example:
a struct from cargo-chef

If you follow the ids…

You can use rustdoc-types to parse
the raw JSON into Rust structs

Rustdoc’s JSON format is enabling
a new generation of Rust tooling

Given a fully qualified path:

➔ Determine the crate it was defined into
➔ Generate JSON docs for that crate

➔ Look up type information

Combining everything together,
we build a call graph for each request handler

The call graph is used for static analysis
and, at the end, to drive code generation

Wrapping up

You can move complexity around,
but you cannot eliminate it

Complexity has to live somewhere

We want Pavex to take on that complexity,
so that you don’t have to

I built a transpiler because I had to

Today we are just scratching the surface,
the foundation we’ll build on top of

Staged compilation opens up
a universe of possibilities!

Auto-instrumentation
Accurate OpenAPI specifications

Automatically exploit concurrency opportunities
Multiple deployment targets

…

“OK, OK, it’s enough, you convinced me
 This Pavex stuff looks super cool,

how do I install it?”

Pavex is not (yet) generally available

We are going to run a closed beta:
you can join the waiting list at

pavex.dev

⚠
Pavex is open source,

but it is a commercial project

Feel free to grab me in the hallway or at lunch,
happy to discuss further and give demos!

The End

Luca Palmieri
@algo_luca

All the beautiful Ferris illustrations
were created by Esther Arzola

https://biscuittowndesigns.com/welcome
https://biscuittowndesigns.com/welcome

Question time!

All the beautiful Ferris illustrations
were created by Esther Arzola

Luca Palmieri
@algo_luca

https://biscuittowndesigns.com/welcome
https://biscuittowndesigns.com/welcome

