
1

Jukka Taimisto
SW Developer, Founder @ SensorFleet

Composable and
safe architecture
for network packet
monitoring

2

Whoami

● Founder & SW Developer at SensorFleet.
● Over 20 years of experience on writing and

breaking protocol implementations.
● Background in C, Java, Python, Go, focusing more

on Rust for few years.
● jtaimisto@gmail.com

3

Roadmap

● Architecture
● Benefits
● Parsing network data
● Testing

4

The problem
● Listen for network traffic from

interface.
● Identify communicating devices (by

MAC address).
● Collect protocol -specific

information.
● Relay collected information for

further processing.

5

Design goals

● Simple architecture.
● Easy to expand with new protocol analyzers /

functionality.
● Allow handling multiple packets concurrently.

6

● Read packets from network.
● Detect communicating devices.
● Collect IP addresses.
● IP protocol analysis.
● Output collected information.

Components

7

Architecture

● Split packet processing to multiple interconnected
tasks called observers.

● Communication between tasks using mpsc
(multiple senders, single consumer) channels.

● Divide observers by network layers.
● Use async rust and tokio to provide

asynchronous runtime.

8

Observers

9

● use luomu-libpcap to
for libpcap packet
bindings.

● Sends received packets
to mpsc channel.

Packet reader

10

● Receives packet and
context from channel.

● Extracts information,
observations.

● Forwards rest of the
packet to output
channel.

Observer

11

Observer state

● Observers own the packet data received from
channel.

● Observers run on their own task and own their own
state data.

● No need for locking between observers.

12

Observations

● Observers collect information from each packet
they receive.

● Instead of collecting information into centralized
database, have each observer send its findings
using mpsc channel.

13

Observers & Reporter

14

● Run on its own async
task.

● Receives observations
from channel.

● Aggregates information
about devices.

● Provides periodic
reports to central
manager.

Reporter

15

Design goals

● Simple
○ Separation of components.
○ No locking needed.

● Expandable
○ New observers can be easily added.

● Tokio provides concurrent and parallel execution
of observers.

16

Ownership & message passing

● Rust’s ownership model and borrow checker
ensure data ownership.

● Ownership guides you to think about data
○ Simple solutions are easier to implement.
○ “what would rustc say about this”.

● While not unique to Rust, channels help with
concurrency.

17

● Channels with capacity
help with rate limiting.

● Either block on send() if
channel is full.

● .. or use try_send() and
drop packet if channel
is full.

Rate limiting with
channels

18

● Using type aliases help
with refactoring or if
channel behavior needs
to be changed.

● Different channel types
according to channel
purpose.

Channel types for
different purposes

19

Fan-out

● Observer model allows running multiple instances
of same observer.

● “Previous” observer or packet reader needs to
schedule packets to multiple channels.

● Note the internal state if running multiple
instances
○ Use mutex to protect the state.

20

Program termination

● Tasks-and-channels model allow “natural”
termination of observer tasks.

● Once the recv() operation indicates that sender
has stopped, it is time to terminate the task.

● If using channels with capacity, it might take a
while as channels are emptied

21

● When user signals it is
time to stop:
○ Terminate packet

reader
○ Wait for all

observers and
reporter to
terminate.

Graceful shutdown

22

Unit testing

● Observer -model allows easy splitting for unit and
system tests.

● Unit test each observer
○ Provide input context, expect observations.

● Focus on testing observer functionality
○ Packet parsing should be tested separately.

23

● Use system tests to test
combinations of
multiple workers.

● Provide packet input,
expect observations as
output

System tests

24

Parsing packets ● Specification defines layout of data
within a packet

● When parsing, data is interpreted
according to specification

● Interpret data as values
○ Byte ordering
○ Constants
○ Substructures

25

Length

● One of the key things is to figure out how much
data to read.

● While Rust protects you from reading outside of
allocated buffer, length checks still need to be
made.
○ Panics occur when trying to read data past the

buffer.

26

● We use untrusted
crate for reading
untrusted data.

● untrustended crate
adds extensions for
reading common
values.

● Use Result type and ?
to fail fast

Parsing with Rust

27

● Use enums and/or
newtype pattern to add
type safety and checks
for validity

● Borrow checker will
help with
copying/passing
reference

Parsing with rust

28

Testing

● Parsers should be tested extensively
○ If it comes from internet, it is malicious

● Unit tests
○ Don’t forget negative test cases.

● Fuzzing helps to find issues you did not know
existed. Apply liberally

29

Conclusions
● Connecting tasks with channels

allows composable architecture.
● Rusts ownership model <3
● When writing protocol parsers,

check your lengths and test, test
and test.

30

Thank you!
Questions?

