Jukka Taimisto

SW Developer, Founder @ SensorFleet

Composable and

safe architecture
for network packet
monitoring

\ \ \
AN \
‘ '\

\ \ \)

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

Whoami

e Founder & SW Developer at SensorFleet.

e (Qver 20 years of experience on writing and
breaking protocol implementations.

e Background in C, Java, Python, Go, focusing more
on Rust for few years.

e jtaimisto@gmail.com

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

Roadmap

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

The problem

e Listen for network traffic from

interface.

e Identify communicating devices (by
MAC address).

e Collect protocol -specific
information.

e Relay collected information for
further processing.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

Design goals

e Simple architecture.
e FEasyto expand with new protocol analyzers /

functionality.
e Allow handling multiple packets concurrently.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

[x

Components

Packet capture

/[]

Read packets from network. Devices }C?
Detect communicating devices.
Collect IP addresses.

IP
IP protocol analysis. gD_(:J

Output collected information. T Q
|)

/

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

Architecture

e Split packet processing to multiple interconnected
tasks called observers.

e Communication between tasks using mpsc
(multiple senders, single consumer) channels.

e Divide observers by network layers.

e Use async rust and tokio to provide
asynchronous runtime.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

Observers

/
A2 y

TCP Protocol observer <l
UDP Protocol observer)/
ICMPV6 observer

)

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 -+ November 21st, 2023

IP observer

Ethernet
observer

| x

Packet reader

 — | —

let mut pcap = AsyncCapture::new(self.handle)?;
loop {
tokio::select! {
_ = &mut stop => {
break;
by
next pkt = pcap.try next() => {
match next pkt {

// write packet to channel

!

pub async fn run_udp_scan(self, mut bufs: BufReceiver, next: FrameSender) {
while let Some((buf, frame)) = bufs.recv().await {
let input = buf.as_input();
// Handle input
if let Err(err) = next.send(frame) {
tracing::warn!("Error while sending to next channel: {}", err);

Observer state

e (Observers own the packet data received from

channel.
e (Observers run on their own task and own their own

state data.
e No need for locking between observers.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

1

Observations

e Observers collect information from each packet
they receive.

e Instead of collecting information into centralized
database, have each observer send its findings
using mpsc channel.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

12

Observers & Reporter

7

pes. y '

TCP Protocol observer e

UDP Protocol observer)

ICMPV6 observer

IP observer

Ethernet
observer

—_——] Packet reader

 — | —

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 -+ November 21st, 2023

13

pub async fn report_producer(

) A

mut observations: ObservationReceiver,
socket: UnboundedSender<String>,
report_interval: Duration,

let mut assets: HashMap<MacAddr, AssetInfo> = HashMap
let mut interval = time::interval(report_interval);

loop {
tokio::select! {
re = observations.recv() => {
// handle observation, break on error

_ = interval.tick() => {

produce_reports(&mut assets, &socket).await;

tinew();

Design goals

e Simple
o Separation of components.
o No locking needed.
e Expandable
o New observers can be easily added.
e Tokio provides concurrent and parallel execution
of observers.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

15

Ownership & message passing

e Rust's ownership model and borrow checker
ensure data ownership.

e (Ownership guides you to think about data
o Simple solutions are easier to implement.
o “what would rustc say about this”.

e While not unique to Rust, channels help with
concurrency.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023]6

pub struct DroppingSender<T>(mpsc::Sender<T>);

impl<T> DroppingSender<T> {
pub fn send(&self, data: T) -> Result<bool> {
match self.0.try_send(data).map_err(Error::from) {

Ok(()) => Ok(true),

Err(Error::Dropped) => {
tracing::warn!("channel dropping data");
Ok(false)

}

Err(err) == Err(err),

pub type BufSender = DroppingSender<(Buf, Frame)>;
pub type BufReceiver = mpsc::Receiver<(Buf, Frame)>;

pub fn buf_channel() -> (BufSender, BufReceiver) {
let (tx, rx) = mpsc::channel(BUF_CHANNEL_SIZE);
(DroppingSender::create(tx), rx)

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

18

Fan-out

e (Observer model allows running multiple instances
of same observer.

e “Previous” observer or packet reader needs to
schedule packets to multiple channels.

e Note the internal state if running multiple
instances
o Use mutex to protect the state.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

19

Program termination

e T[asks-and-channels model allow “natural”
termination of observer tasks.

e Once the recv() operation indicates that sender
has stopped, it is time to terminate the task.

e If using channels with capacity, it might take a
while as channels are emptied

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

20

let Ok(signals) = Signals::new([SIGINT, SIGTERM]) else {
panic!("Could not install sighandler");

b

let sig_handle = signals.handle();

let sig_handler = tokio::spawn(signal_handler(signals, stop_tx));

7.

let packet_reader = tokio::spawn(capt.read_packets(packet_tx, stop_rx));

if let Err(error) = packet_reader.await {
tracing::warn!("Packet Reader exited with error: {}", error)
’
tracing::info!("packet reader stopped");
// stop the signal handler
sig_handle.close();
// wait for all other tasks to terminate
futures::future::join_all(handles).await;
// and finally wait for signal_handler to terminate
if let Err(e) = sig_handler.await {
tracing::warn!("Signal handler terminated with error: {}"

/s

Unit testing

e (Observer -model allows easy splitting for unit and
system tests.

e Unit test each observer
o Provide input context, expect observations.

e [ocus on testing observer functionality
o Packet parsing should be tested separately.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

22

let

let
let
let

1)

for

ctx.
GtX.

.teardown().await;

async fn test_passthrough_tcp4() {

pkt = "\
f09fc266b02b1c57dc5bb6550800450000340000400040063567c0a801e60344\
3f8bd7f001bb2cadaf7c4674a62a801007ff14ac00000101080a5e1160089109\
631d";
raw = parse_hex_string(pkt).unwrap();
mut ctx = Context::create();
expected_obs = [
Observation::Asset(AssetObservation {

VAL
k),
Observation::Asset(AssetObservation {

/) ...

L),

send_packet(raw);
expect_frame(expected_flow).await;
obs in expected_obs {
ctx.expect_observation(obs).await;

Parsing packets

01110010
01110101

01[[@1[%
0111100

RUSTLAB The International Conference on Rus

in Florence

Specification defines layout of data
within a packet

When parsing, data is interpreted
according to specification
Interpret data as values

o Byte ordering

o Constants

o Substructures

| November 19th, 2023 > November 21st, 2023

24

Length

e One of the key things is to figure out how much
data to read.

e While Rust protects you from reading outside of
allocated buffer, length checks still need to be
made.

o Panics occur when trying to read data past the
buffer.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

25

let
let
let
let

let
let
let

)

})

pub fn parse_header(input: &mut Reader) -> Result<TcpHeader, Error> {

src_port = input.read_ul6be()?;
dest_port = input.read_ul6be()?;
seq = input.read_u32be()?;
ack = input.read_u32be()?;

offset = input.read_byte()?;
data_offset = (offset >> 4) * 4;
flags = input.read_byte()?.into();

if 1(20..=60).contains(&data_offset) {

tracing::warn!("Unexpected length {} for TCP header", data_offset);
return Err(Error::ParseError);

// skip window, checksum, urgent pointer and options
// we have already consumed 14 octets from the header.
input.skip(usize::from(data_offset) - 14)7;

Ok(TcpHeader {

ports: PortPair::new(src_port.into(), dest_port.into()),
flags,

seq,

ack,

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023 26

fn parse_dhcp_option<'a>(input: &mut Reader<'a>) -> Result<Option<DhcpOption<'a>>, Error> {
let mut code = DhcpOptionCode::Pad;
while code == DhcpOptionCode::Pad {
code = input.read_byte()?.try_into()?;
}
if code == DhcpOptionCode::End {
// End of options
return Ok(None);
}
let option_length = input.read_byte()?;
0k(Some(DhcpOption {
code,
value: input.read_bytes(usize::from(option_length))?,
1))

Testing

e Parsers should be tested extensively
o Ifit comes from internet, it is malicious

e Unittests
o Don't forget negative test cases.

e Fuzzing helps to find issues you did not know
existed. Apply liberally

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

28

e Connecting tasks with channels
allows composable architecture.

e Rusts ownership model <3

e When writing protocol parsers,
check your lengths and test, test
and test.

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

29

30

\ o
\ /2:: ::,/ —c
¥ {

D RN V)
O C
> O
< 2
C

o D
cC 2
— O

RUSTLAB The International Conference on Rust in Florence | November 19th, 2023 > November 21st, 2023

