
OptionFactory

Teaching an old dog new tricks
Extending PostgreSQL capabilities with Rust



Francesco Degrassi

Enthusiastic yet pragmatic Lean Software Developer.

Uppish and cynical nihilist from time to time.



PostgreSQL

● Reliable
○ has been around a while
○ very robust, mature development process

● Supported
○ ubiquitous
○ mature community

● Open source

● Versatile
○ extensive support for schemaless, structured data types
○ Extensible!!

Old, but gold



Why you should care

● Improve expressiveness
○ Use constructs specific of your domain

● Improve operability
○ understand how your database is performing
○ expose additional operational metrics

● Process data more efficiently
○ leverage specific properties of your data to 

improve performance

● Simplify your architecture
○ just let Postgres do the job

● Avoid reinventing the wheel



Some examples

Spatial database extender 
for PostgreSQL

Postgres for time-series

The Postgres you love, 
at any scaleMaking Postgres and Elasticsearch 

work together like it's 2023

Track planning and 
execution statistics



Extension points



User defined functions

And also procedures, triggers



Custom types

And also

● aggregates

● operators

● operator classes / families



Procedural languages



Access methods

Index
Enhance indexing capabilities by creating 
your own index type

Table
Change the storage format of tables to 
improve data locality



Foreign data wrappers

● Access external data as if it was a postgres table
○ both read and write access
○ parallel scan support

● Anything goes:
○ local files
○ remote files
○ remote databases (SQL or NoSQL)
○ APIs
○ /proc



… and many more

● background workers

● utility commands

● planner hooks

● …



Packing it all together

Extensions
● Packaged set of user-defined functionality

○ can consist of a simple SQL script

● Loaded into a specific database
○ CREATE EXTENSION pg_stat_statements;

● Lifecycle support with versioning and migration scripts
○ ALTER EXTENSION pg_stat_statements UPDATE



Postgres - authoring extensions

● A combination of languages:
○ SQL
○ embedded procedural languages
○ native code, via dynamically loaded libraries

● Native code
○ unavoidable for most advanced use cases
○ “C” calling convention
○ exported functions require metadata (generated via macros in C)
○ free access to postgresql internals and support libraries



C extension blues

● Segmentation Fault Fest™

● Low abstraction level

● Limited composability
○ no generics or templates

● Limited expressiveness

● Lackluster tooling
○ dependency management
○ build system



Red pill #1: Multicorn

Foreign Data Wrappers in Python
● Just foreign data wrappers

● Limited performance

● It’s Python…

● Not really active anymore



Red pill #2: AWS TLE

Trusted Language Extensions
● Develop extensions that can be deployed on managed databases (e.g. RDS)

● Severely limited functionality (by design)

● Provides
○ a mechanism to manage (sub)extensions without access to the filesystem
○ a single ‘passcheck’ hook (as of now)



Red pill #3: C++



A wild crab appears

Rust
● Safe, and yet fast

● High abstraction level

● Composable (generics)

● Expressive, functional

● Top notch tooling (cargo)



It’s dangerous to go alone!

Several obstacles:

● lack of bindings for postgres functions

● lack of equivalents to postgres macros

● memory model mismatch

● unwind (error / exception handling) mismatch



● Rust framework for developing postgres extensions

● Developed and open-sourced by TCDI

● Active, open and friendly community

● Bridges the gap between Rust and PostgreSQL

https://github.com/pgcentralfoundation/pgrx

Take this!

https://github.com/pgcentralfoundation/pgrx


● Simplifies and abstracts Postgres extension points
○ rust types, rust functions, macros
○ handles incompatibility between rust unwind and postgres forced-unwind

● Still allows low-level access
○ pgrx-sys crate exposes rust bindings for low-level postgres functions

● High and low level access
○ think git porcelain & plumbing

On rails (but you can get off)



● Extends build system (cargo) with pgrx-specific commands

● Downloads and compiles multiple postgres major versions

● Generates new project from archetype to start right away

● Includes idiomatic rust test framework

● Builds, deploys and runs the extension locally

● Packages the extension to ship it out

With you, every step of the way



● Installation, setup

● User Defined Functions

● Testing

● Running

● Foreign data wrapper
○ Supabase Wrappers

Demo

Fork me on github!



● Unavoidable friction 
○ between Rust memory model & ownership and Postgres memory contexts

● Going fast requires quite a bit of unsafe code

● Rust compilation is on the slow side
○ and pgrx is large and monolithic, but it is improving

● Pgrx still has quite a few rough edges
○ but they’re getting fixed

A sword, not a magic wand



● Distributed system, processing large amounts of data, stored in proprietary format

● Proprietary query engine
○ limited feature set
○ expensive to maintain and extend

● Reimplement query engine as a Foreign Data Wrapper
○ using pgrx
○ quite advanced: parallel scan, predicate pushdown, bloom filters, range indices

● Excellent results
○ Fast! Over 500M rows scanned per second
○ Easier to access
○ Far cheaper to maintain

Case history - project square wheel



OptionFactory

■ Lean Software Development

● Continuous Delivery - High availability - Scale-up

● Security sensitive & high uncertainty domains

■ Software Architecture Consultancy

● Technical Due Diligence



Thanks! And get in touch!

@EdMcBane

francesco.degrassi@optionfactory.net

http://www.optionfactory.net

http://www.optionfactory.net

