
Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Building the next cloud
compute primitive — in Rust

Luca Casonato

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Luca Casonato

Software Engineer at Deno Land Inc

Working on Deno and Deno KV

Previously lead of Deno Deploy team

Now mostly special projects

I do standards work in the JavaScript space: WHATWG, W3C, TC39, WinterCG

Who am I?

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

What is Deno?

Deno is a next-generation JavaScript runtime.

Unlike the Rust ecosystem, the JavaScript ecosystem is terrible.

JS tooling and ecosystem are fragmented and fragile.

No single standard library, no standard formatter, linter, doc generator, testing, etc.

We’re fixing this. Deno is an all in one toolbox for developing web apps.

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Demo

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Deno is built in Rust. We maintain >500k LOC of Rust.

About 70-80% of our code is open source and published to crates.io.

We publish >55 crates ourselves: v8, urlpattern, fastwebsocket, monch, acme2,
rustls-tokio-stream

 And help maintain others: rust-url, wgpu

Deno ❤ Rust

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Deno is built on the shoulders of giants

We don’t build our own JavaScript engine (VM), but use Google’s V8 (C++).

We provide safe, idiomatic Rust bindings to V8 as a crate.

All of our services are powered by the excellent Tokio and Hyper crates.

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

But why Rust?

Deno was originally written in Go.

Go is a great language for async HTTP servers. But not reliable, strict,
customizable, and performant enough.

Needed something strict (reliable), lightweight, performant, and customizable.

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Rust provided us this

Result, Option, and ADT enums enforces exhaustive error handling and recovery.

Explicit memory makes performance characteristics transparent. Borrow checker
enforces memory correctness.

Can easily(-ish) integrate with C++ (needed to bind to V8).

No hidden runtime overhead (GC, implicit atomics, etc).

Incredible built-in tooling.

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Tangent: built in tooling

Rust users are incredibly lucky to have such an excellent set of built in tooling.

- linter
- formatter
- testing
- documentation generator
- package manager

Most ecosystems do not have this (C++, JS, Swift, C#, …)

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Back to Deno: what we’re building

So, we don’t just build a runtime and tooling.

Really, Deno is a cloud company. We host your code on our platform using
isolates. Global distribution, quick deployment, no config.

Isolates: the next frontier in cloud computing.

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Demo

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Cloud computing compared

Bare metal On-prem VM Cloud VM Containers Isolates

Deployment
unit

OS + Runtime
+ Code

OS + Runtime
+ Code

OS + Runtime
+ Code

Runtime +
Code

Code

Lead time days to weeks hours to weeks instant instant instant

Investment Hardware Hardware - - -

Usage billing - - Real time Real time CPU time

Scale to zero ❌ ❌ ✅ ✅ ✅

Cold start time - - ~10s ~1s ~0.1s

Utilization Low Low Low Higher Highest

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Cold starts?

Scale to zero: don’t run the app if there’s no traffic

First request results in start of the app. This time is the cold start.

Cold starts result from the work performed that is specific to a tenant.

More work per tenant means higher cold starts.

=> Reducing differences between tenants equals lower cold starts.

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Cold starts compared
VM Container Isolate

Boot machine 📘🛠 📘🛠 📘🛠

Start kernel 👤 📘🛠 📘🛠

Initialize networking stack 👤 📘🛠 📘🛠

Configure kernel virtualization - 👤 📘🛠

Start and configure runtime 👤 👤 📘🛠

Boot user code 👤 👤 👤

Connect to database 👤 👤 👤

Serve request 👤 👤 👤

📘🛠 Shared across tenants
👤 Specific to a tenant

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Utilization?

How well can you make use of the underlying hardware resources?

Billing by real time:

- Reserve some resources for every tenant
- Users pay for resources they didn’t use

Billing by CPU time:

- Everyone uses as many resources as required (within limits)
- Pay only for resources used
- Requires achieving high average utilization

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Achieving high utilization

Requires high packing density.

Packing density: amount of tenants per physical resource.

High density requires efficient tenants.

Sharing resources between tenants requires less memory / CPU per tenant.

Low baseline memory / CPU => higher density.

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Comparing baseline

VM Container Isolate

OS ~100 MB Shared Shared

Runtime ~10 MB ~10 MB Shared

User heap ~5 MB ~5 MB ~5 MB

Baseline per tenant ~115 MB ~15 MB ~5MB

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

We’re not just building a runtime

Also:

- A multi-tenant runtime hypervisor
- Load balancers
- Control plane API servers
- A distributed database

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

These have different requirements

Hypervisors require:

- Low overhead
- Very high failure tolerance

HTTP load balancers require:

- High performance
- Predictable prioritization of work under high load

Control plane servers:

- Robust I/O with user (parsing, errors, HTTP)
- Third-party integration and SDKs

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Rust let’s us solve all of these*

Low overhead ✅ no GC to fight with about memory

Very high failure tolerance ✅ Result, Option, ADT enums, thiserror

High performance ✅ performance is explicit, not magic

Predictable prioritization of work ✅ manual scheduling with Future::poll

Robust I/O with user ✅ hyper, serde_json, prost, etc

Third-party integration and SDKs 😢 This one is not good

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Rust is not great for API servers (yet)

AWS ✅ but not production ready

GCP ❌ no ongoing work

Azure 🟠 in development

Stripe ✅ third party

Twilio ❌
…

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

There are too many flavors a library could be developed for:

- synchronous
- tokio + openssl
- tokio + rustls
- async-std + openssl
- async-std + rustls

Finding a library for the API you need, doesn’t mean you can use it.

This problem gets worse

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Our experience with this

You end up writing a lot of mini-SDKs for all the APIs yourself.

We internally have:

- Google Cloud Storage
- Google Cloud IAM
- Google Cloud Secrets Manager
- Google Cloud Instance Metadata
- Postmark
- NPM
- ACME (Let’s Encrypt)
- GitHub
- and probably more…

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Hurdles appear at the extremes

Internal repository that builds 14 binaries from one Cargo workspace, with >25 test
binaries.

Various challenges:

- Parallel incremental builds require upwards of 40GB of RAM
- No `cargo test` sharding
- No machine readable reporting (JUnit) in `cargo test`
- Effective CI caching is very difficult
- target/ directories upwards of 250 GB

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Example: custom `cargo test` tooling

Build test binaries on one machine

Execute on one or more runner machines

Use --message-format=json to convert JSON output of `cargo test` into JUnit

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Conclusion

- Rust is fantastic for building cloud services
- Work needed from vendors to ship good Rust SDKs
- Rust has fantastic built in tooling
- Larger teams: be prepared to be at the forefront of tooling innovation

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

We’re hiring!

Are you interested in working on the next generation of cloud computing?

- Your work has impact: >300k monthly users
- A lot of open source
- 100% of systems are Rust
- Fully remote

Come talk to me :)

Building the next cloud compute primitive — in Rust Luca Casonato lcas.dev @lcasdev

Thanks!

https://deno.com

