Level up your backend with
Cucumber feature tests
by Koen Bollen @ Golab 2023

Quick intro!

History of Koen Bollen: About Poki ~
e Taught at University of Applied Sciences in e Web game portal
Amsterdam e 150 million unique users per month
e Gamedev » PC & Mobile e Work with over 300 developers on a revenue share basis
e Using Go since 2014 e We use a lot of Cucumber!

° Started at Poki in 2019

Level up your backend with feature tests

Introductions

& What is Cucumber
© Testing your APIs
., Why?

Demo time

Protips

= Closing notes

N O 00k~ W N

¢ 'What is Cucumber

What is Cucumber?

Eating too many cucumbers may not be good for you
Eating too much of anything may not be good for you.

Eating a few is no problem
Alice is hungry
she eats 3 cucumbers
she will be full

Running a cucumber scenario

people := make([
activePerson
step(" /(.*) is hungry/ ,
people[name] = 0
activePerson = name

Eating too many cucumbers may not be good for
Eating too much of anything may not be good for you.

Eating a few is no problem
Alice is hungry })
she eats 3 cucumbers
she will be full

step(/she eats (\d+) cucumbers/", (amount) {
people[activePerson] += amount
})
step(' /then she will be full/", () {
people[activePerson] < FullnessThreshold {
fmt. Errorf("%s is not full", activePerson)

github.com/cucumber/godog

http://github.com/cucumber/godog

Examples:

Terms and Conditions effective from 17 May 2022
the contract is created
the contract is ready to sign
the Seller agrees to Term and Conditions version 17 May 2022

API Service
GET the heatlh endpoint
the client does a GET request to "/health"
the response code equals 200 (0K)
the response header "Content-Type" should be "application/json"
the response body should be:

json
{

"healthy": tr
= y UE Players can create and connect a network of players

}

the "signaling" backend is running

A player can create a network to join a game
"green" creates a network for game "l1l64aae2e-c6e5-4073-80bf-b2a03ad4c9b7"
"green" receives the network event "ready"
"green" has recieved the peer ID "h5yzwyizlwao"

Keywords

e F[eature
e Background

® Scenario

e Steps:
o Given
o When
o Then

Custom CORS Headers

In order to prevent large scale abuse of this service we only allow cl
requests from Poki domains. Some games can be configured to be allowed
custom other domains.

CORS 1is always allowed on poki.com
the game "c79e39b4-3b34-42ac-b538-c2fe®0d49944f" exists

the client does a OPTIONS request to "/v0/c79e39b4-3b34-42ac-b5
| Origin | https://poki.com |
| Access-Control-Request-Method | POST |

the response code should be 204 (No Content)

the response header "Access-Control-Allow-0rigin" should be "htt
the response header "Access-Control-Allow-Methods" should be "DE
the response header "Access-Control-Allow-Headers" should be "*"

) Testing your APIs

Using Go’s standard testing package

TestHandler_ListUsers(t *testing.T) {
req := httptest.NewRequest("GET", "/users", nil)
resp := httptest.NewRecorder()

mockStore := &stores.Memory{}
fakeClient := &cloudflare.MockClient{}

mockStore.AddMockUser("1", "john")
mockStore.AddMockUser("2", "kate")

handler := Handler(context.Background(), mockStore, fakeClient)

handler.ServeHTTP(resp, req)

resp.Code != http.StatusOK {
t.Errorf("expected status code %d, got %d", http.StatusOK, resp.Code)

Using a library

TestGetMessage(t *testing.T) {

handler := (w http.ResponseWriter, r *http.Request) {
msg := {"message": "hello"}"
_s _ = w.Write([] (msg))
w.WriteHeader(http.StatusOK)

}

apitest.New().
HandlerFunc(handler).
Get("/message").
Expect(t).
Body({"message": "hello"}).
Status(http.StatusOK).
End()

Maybe we use cucumber?

List users
List all users from a team

these "teams" records:
id | name |
1 | A Team |
2 | B Team |
these "users" records:
id | team_id | name |
1 |1 | Kate |
202 | John |
3 |1 | Jane |
the client does a GET request to "/teams/1l/users"
the response code equals 200 (0K)
the response header "Content-Type" should be "application/json"
the response body should be:

json
[
{"1d": 1, "team_id": 1, "name": "Kate"),

{"1d": 3, "team_id": 1, "name": "Jane")

]

Full example

Vote Counting

A common feature of userdata is for other users to up- and downvote entries.
These 'votes' need to be tracked so users can't keep continue to vote.

these "userdata" records exist:
id | values | data | game
cevc2tkllhclvn23d8r0@ | {"title": "Best Map", "up-vote": 42} | "binary" | be2546ff-dfcd-4fc9-8276-6247¢
cevc2usllhcmlsnp7gh® | {"title": "Good Map 1", "up-vote": 32} | "binary" | be2546ff-dfcd-4fc9-8276-6247¢
cevc2vkllhcm21lkvugjg | {"title": "Good Map 2", "up-vote": 32} | "binary" | be2546ff-dfcd-4fc9-8276-6247¢
cevc3l4llhemctnecgbug | {"title": "Bad", "up-vote": 4} | "binary" | be2546ff-dfcd-4fc9-8276-6247¢

Vote on a level
the time is "2006-01-02T18:04:05Z2"
the client's remote address is "235.209.157.191"

the client does a POST request to "/v0/be2546ff-dfcd-4fc9-8276-62476f625870/userdata/levels/cevc2vkllh
/_vote?key=up-vote"

the response code should be 200 (0K)
the response body should be the following "application/json":

LHc 1TCopulioc LOUC SlivuiLtu U ZUU (UNW\)
| the response body should be the following "application/json":

"""json
{
"id": "cevc2vkllhcm2lkvugijg",
"meta": {
"revision": 1,
"created_at": "2006-01-02T15:04:05Z2",
"updated_at": "2006-01-02T18:04:05Z2",
"expires_at": "2007-01-02T18:04:05Z",
"expires_in": 31536000
},
"values": {
"title": "Good Map 2",
“up-vote": 33
}
}
nd this "userdata" record exists:
| id | cevc2vkllhcm21lkvugijg |
| values | {"title": "Good Map 2", "up-vote": 33} |

| revision | 1 |
| this "votes" record exists:
userdata_id | cevc2vkllhcm2lkvugjg |

I

value_key	up-vote
user_ip	235.209.157.191
day	2006-01-02T00:00:00Z
created_at	2006-01-02T18:04:05Z

Step definitions

scenario.Step("“the response code should be (\d+) \([*\)]+\)$,
s.ThenStatusShouldBe)

(s *HTTPSteps) ThenStatusShouldBe(ctx context.Context, status
s.RecordedResponse == nil {
fmt.Errorf("no request was made")

s.RecordedResponse.Code != status {
body := strings.TrimSpace(s.RecordedResponse.Body.String())
fmt.Errorf("expected status %d, got %d (body: %v)", status, s.Rec

scenario.Step(/~these "([~"]*)" records:$/", givenTheseRecords)

givenTheseRecords(tableName , data *godog.Table)
tx, err := database.Begin()
err != nil {
err

}
fields := ExtractTableHeaders(data)

marks := strings.Repeat("?, ", len(fields)-1) + "?"

stmt, err := tx.Prepare("REPLACE INTO " + tableName + " (°" + strings.Join(fields, ", ") +
"*) VALUES (" + marks + ")")
err != nil {
tx.Rollback()
err

1 :=1; 1 < len(data.Rows); i++ {
vals []any
R celln: = data.Rows[i1].Cells {
vals = append(vals, cell.Value)

_, err := stmt.Exec(vals...); err != nil {

tx.Rollback()
err

tx.Commit()

. Why?

Pros

Everyone can read these tests

Super easy to write tests upfront before worrying
about implementation

Cucumber can be used in any programming
language

100% test coverage of documented features!

We don’t run our codebase locally anymore

Pro: Everyone can read the tests

e |t serves as documentation
e Early discussion before implementation
o Ask our frontender if this is an

endpoint they can work with.

Pro: Easy to write test upfront

e Allows you to think about a feature before
implementing it
e Makes it clear to colleagues what an

endpoint is going to be

(we sometimes make a pull-request with just a test)

Pro: Cucumber is reusable

e Skill learned in Ruby you can use in Go

e Porting a (sub)service to another
technology? Copy over the test suite!

e One testing syntax for multiple projects

within an organization

Pro: 100% test coverage*

*of documented features.

e |[f the feature tests serve as documentation,
then the documentation is tested
e Super easy to add a fringe edge-case as a

feature test to fix a bug

Pro: Easy development

® We don’t run our codebase locally
® Write a feature test, then implement the
feature while running the test to try out

your code.

® [Easy to run just one test or a section of test

Cons

e More work upfront implementing Step Definitions
e Might run a little slower then native unit tests
e Need to learn cucumber+gherkin

e Debugging is a bit more involved

Con: More work upfront

e Making step-definitions takes time,
especially when making them generalized
e You always need a step-definitions, in

normal tests you can add code inline

STen

Con: Performance overhead

e Might run a little slower than native unit tests
e Had to compile the entire app in one binaries
e Has to parse the tests and execute them

instead of directly running a TestXxx()

function

Con: New skill

® You need to learn a new syntax

e |t's a different way of testing/working with

feature tests

STen

Con: Debugging is more involved

e No VScode integration (yet)

e You can’t add breakpoints in the feature

test files

e You can run tests using delve (also in

vscode)

STen

Tips

—_—

> W DN

Isolate your tests

Generalize your step definitions
But also allow for specific steps for readability
Write test for the reader (also true for coding in
general)

Use actual dependencies when they contain

logic (e.g. database)

cec

Closing notes

We are super happy with our cucumber feature tests

Super useful for regression tests and red/green tests

Easier in communication with frontenders and other stakeholders
We still write a bunch of unit tests to cover small edge cases

It saves us a lot of timel!

Thanks! Any questions?

Links

https://cucumber.io/

https://github.com/cucumber/godog

https://cucumber-rs.qgithub.io/cucumber/current/

https://github.com/egonelbre/gophers

Code snippets created with: https://carbon.now.sh/

_

https://cucumber.io/
https://github.com/cucumber/godog
https://cucumber-rs.github.io/cucumber/current/
https://github.com/egonelbre/gophers
https://carbon.now.sh/

fin

