
Level up your backend with
Cucumber feature tests

by Koen Bollen @ Golab 2023

History of Koen Bollen:

● Taught at University of Applied Sciences in

Amsterdam

● Gamedev → PC & Mobile

● Using Go since 2014

● Started at Poki in 2019

Quick intro!

About Poki

● Web game portal

● ±50 million unique users per month

● Work with over 300 developers on a revenue share basis

● We use a lot of Cucumber!

Level up your backend with feature tests

1. Introductions

2. 🥒 What is Cucumber

3. 🌐 Testing your APIs

4. 🏎 Why?

5. 🎛 Demo time

6. 🚀 Protips

7. 🗒 Closing notes

🥒 What is Cucumber

What is Cucumber?

Running a cucumber scenario

github.com/cucumber/godog

http://github.com/cucumber/godog

Examples:

Keywords

● Feature

● Background

● Scenario

● Steps:

○ Given

○ When

○ Then

🌐 Testing your APIs

Using Go’s standard testing package

Using a library

Maybe we use cucumber?

Full example

Step definitions

🏎 Why?

Pros
● Everyone can read these tests

● Super easy to write tests upfront before worrying
about implementation

● Cucumber can be used in any programming
language

● 100% test coverage of documented features!

● We don’t run our codebase locally anymore

Pro: Everyone can read the tests

● It serves as documentation

● Early discussion before implementation

○ Ask our frontender if this is an

endpoint they can work with.

● Allows you to think about a feature before

implementing it

● Makes it clear to colleagues what an

endpoint is going to be

(we sometimes make a pull-request with just a test)

Pro: Easy to write test upfront

Pro: Cucumber is reusable

● Skill learned in Ruby you can use in Go

● Porting a (sub)service to another

technology? Copy over the test suite!

● One testing syntax for multiple projects

within an organization

Pro: 100% test coverage*

*of documented features.

● If the feature tests serve as documentation,

then the documentation is tested

● Super easy to add a fringe edge-case as a

feature test to fix a bug

Pro: Easy development

● We don’t run our codebase locally

● Write a feature test, then implement the
feature while running the test to try out
your code.

● Easy to run just one test or a section of test

Cons

● More work upfront implementing Step Definitions

● Might run a little slower then native unit tests

● Need to learn cucumber+gherkin

● Debugging is a bit more involved

Con: More work upfront

● Making step-definitions takes time,

especially when making them generalized

● You always need a step-definitions, in

normal tests you can add code inline

Con: Performance overhead

● Might run a little slower than native unit tests

● Had to compile the entire app in one binaries

● Has to parse the tests and execute them

instead of directly running a TestXxx()

function

Con: New skill

● You need to learn a new syntax

● It’s a different way of testing/working with

feature tests

Con: Debugging is more involved

● No VScode integration (yet)

● You can’t add breakpoints in the feature

test files

● You can run tests using delve (also in

vscode)

🎛 Demo time

1. Isolate your tests

2. Generalize your step definitions

3. But also allow for specific steps for readability

4. Write test for the reader (also true for coding in

general)

5. Use actual dependencies when they contain

logic (e.g. database)

🚀 Tips

🗒 Closing notes

● We are super happy with our cucumber feature tests

● Super useful for regression tests and red/green tests

● Easier in communication with frontenders and other stakeholders

● We still write a bunch of unit tests to cover small edge cases

● It saves us a lot of time!

Thanks! Any questions?

Links

https://cucumber.io/

https://github.com/cucumber/godog

https://cucumber-rs.github.io/cucumber/current/

https://github.com/egonelbre/gophers

Code snippets created with: https://carbon.now.sh/

https://cucumber.io/
https://github.com/cucumber/godog
https://cucumber-rs.github.io/cucumber/current/
https://github.com/egonelbre/gophers
https://carbon.now.sh/

fin

