
B R I N G G A M E B O Y
A L I V E I N T H E W E B

W I T H R U S T
A N D W E B A S S E M B LY

Raphael Amorimgithub.com/raphamorim
twitter.com/raphamorims
mas.to/@mustache
mustache.bsky.social

If by any chance you speak
Portuguese, I wrote book about

Rust and WebAssembly

If you don’t, sorry for

 the additional spam.

D I S C L A I M E R # 1

Nothing of this talk is written in stone.

For example: You should be able to write your Game Boy with Rust, Go,
JavaScript, Java, or any programming language that you want to.

There’s no advocation of tech gatekeeping in this talk.

D I S C L A I M E R # 2

This talk does not endorse or promote any type of piracy activity.

The act of build or install an emulator is not illegal.

As many others emulators that have been created over past decades, this project is
just a study case.

D I S C L A I M E R # 3

There’s a lot of concepts required by a Game Boy emulator to properly work that we
will briefly or not address.

However, I'll leave links at the end of the slides so you can deepen your Game Boy
understanding.

COOL ! LET ’S START

OUR GAME BOY

JOURNEY

A long time ago someone told me
that if you want to learn how a
specific computer works.

There’s no better way to learn than
by emulating that computer.

A long time ago someone told me
that if you want to learn how a
specific computer works.

There’s no better way to learn than
by emulating that computer.

I always wanted to learn

how a Game Boy works.

Image from Jeff Frohwein Source:
 http://www.devrs.com/gb/hardware.php#hardgb

Emulators

An emulator is hardware or software that
enables one computer system (called the
host) to behave like another computer
system (called the guest).

You can see emulation everywhere.

Windows XP running an
Archimedes emulator through

ZX Spectrum emulator.

Windows XP (host)

ZX Spectrum emulator (guest)

You can see emulation everywhere.

Terminal emulation

The image in the left is a VT100
often emulated by popular
terminals emulators nowadays.

Although many terminals
emulators are compatible with
VT100 is quite common see
extension of the original
functionalities.

You can see emulation everywhere.

"Harvest Moon: Back to Nature" was
originally released for PsOne but also
available in other video game consoles like
PS5 through emulation.

There are other types of emulators

like hardware emulators, network
emulators, in-circuit emulators (ICE),
server emulators and etcetera.

There’s tons of emulators for Game Boy

However majority of the emulators
that I found were targeting either
desktop or web.

What if we could create a Game Boy emulator
that runs as a (1) desktop application

or as a (2) browser application

(or even a (3) terminal application) ?

Terminal
Desktop

Web

cargo init

The code of this talk is available in:
github.com/raphamorim/mini-gameboy-emulator-rustlab

http://github.com/

There’s multiple tools/programming
languages that can you can use but
I’ve decided to use Rust.

Rust

Low-Level control with high-level ergonomics

The language doesn’t have a runtime,
allowing to create small .wasm sizes
since there is no extra stuff being
added like a garbage collector.

Control over indirection (dereferencing),
monomorphization, memory layout.

Now we decided the language let’s
establish our emulation goal:

The emulator will run a simple game
that was created solely for this
conference talk.

Emulators are free and legal, ROMs are not *

* This statement assumes the ROM was obtained

without any permission by the copyright holders.

Mostly by the fact that:

gbstudio.dev

Testing our game using
Analog Pocket

analogue.co/pocket

Testing our game using
Analog Pocket

analogue.co/pocket

Created a folder rom that contains the game file, intel hexadecimal object,

debugging maps and other stuff. For this talk we mostly care about the .gb format

For this talk I didn’t want to have an unified render for multiple
platforms.

Mostly because we want to primary learn how a Game Boy
works, so if you have any expertise either with HTML5 Canvas
(CanvasRenderingContext2D) or OpenGL is quite easy to
contextualise what we are doing through the talk.

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

[package]
name = “gameboy"
version = "0.1.0"
edition = "2021"

[[bin]]
name = "desktop"
path = "src/desktop.rs"

[lib]
name = "wasm"
path = "src/wasm.rs"
crate-type = ["cdylib"]

index.html

src/

desktop.rs

wasm.rs

gameboy/

mod.rs

http://desktop.rs
http://wasm.rs
http://mod.rs

In this talk we are assuming that:

- [lib] will always be a cdylib that targets wasm32

- [lib] contains a completely different code than [[bin]]

- both [lib] and [[bin]] consumes a gameboy mod.

This configuration can be quite chaotic for many cases. Majority of
the time you want to reuse code between target archs or better
organise it (e.g having distributed crates with cargo workspaces).

[package]
name = “gameboy"
version = "0.1.0"
edition = "2021"

[[bin]]
name = "desktop"
path = "src/desktop.rs"

[lib]
name = "wasm"
path = "src/wasm.rs"
crate-type = ["cdylib"]

src/gameboy/mod.rs
impl GameBoy {
 pub fn new(rom: Vec<u8>) -> Self {
 Self {
 width: 160,
 height: 144,
 }
 }

 pub fn width(&self) -> u32 { self.width }
 pub fn height(&self) -> u32 { self.height }
 pub fn data(&self) -> &[u8] { &[] }
 pub fn frame(&self) {}
 pub fn keydown(&self, button: Button) {}
 pub fn keyup(&self, button: Button) {}
}

pub enum Button {}

pub struct GameBoy {
 width: u32,
 height: u32,
}

http://mod.rs

WebAssembly

src/web.rs

#[wasm_bindgen]
pub async fn render(rom: Vec<u8>) -> Result<(), wasm_bindgen::JsValue> {
let mut gb = GameBoy::new(rom);

let document = window().document().unwrap();
let game = document.get_element_by_id("game");
let canvas = document.create_element("canvas")?
 .dyn_into::<web_sys::HtmlCanvasElement>()?;
game.unwrap().append_child(&canvas)?;
canvas.set_width(gb.width());
canvas.set_height(gb.height());
let context = canvas.get_context("2d")?.unwrap()
 .dyn_into::<CanvasRenderingContext2d>().unwrap();

src/web.rs

let f_main = Rc::new(RefCell::new(None));
let f_frame = f_main.clone();
*f_frame.borrow_mut() = Some(Closure::wrap(Box::new(move || {
 gb.frame();
 log("Up and running");
 if let Ok(image_data) = ImageData::new_with_u8_clamped_array_and_sh(
 wasm_bindgen::Clamped(gb.data()),
 gb.width(),
 gb.height(),
) {
 context.put_image_data(&image_data, 0.0, 0.0).ok();
 }

 request_animation_frame(f_main.borrow().as_ref().unwrap());
}) as Box<dyn FnMut()>));

request_animation_frame(f_frame.borrow().as_ref().unwrap());

OpenGL

src/desktop.rs

const VERTEX: &str = r"#version 150 core
in vec2 pos;
in vec3 color;
in vec2 tcoord;
out vec3 Color;
out vec2 coord;
void main() {
 Color = color;
 coord = tcoord;
 gl_Position = vec4(pos, 0.0, 1.0);
}";

const FRAGMENT: &str = r"#version 150
core
in vec3 Color;
in vec2 coord;
out vec4 outColor;
uniform sampler2D sampler;
void main() {
 outColor = texture(sampler, coord);
}";

src/desktop.rs

pub fn draw(&self, gb: &GameBoy) { unsafe {
gl::ClearColor(0.0, 0.0, 1.0, 1.0);

 gl::Clear(gl::COLOR_BUFFER_BIT);

gl::TexImage2D(
gl::TEXTURE_2D, 0, gl::RGB as i32,
gb.width() as i32, gb.height() as i32,
0, gl::RGBA, gl::UNSIGNED_BYTE,
gb.data().as_ptr() as *const _,

);
assert_eq!(gl::GetError(), 0);

gl::DrawElements(
gl::TRIANGLES, 6,

 gl::UNSIGNED_INT, std::ptr::null());

src/desktop.rs

#[inline]
pub fn load_our_game_rom() -> Result<Vec<u8>, Error> {
 use std::{fs::File, io::Read};
 let mut rom = Vec::new();
 let file = File::open("./rom/game.gb");
 file.and_then(|mut f| f.read_to_end(&mut rom))?;
 Ok(rom)
}

fn main() -> Result<(), Error> {
 let rom_data = load_our_game_rom()?;
 let gb = GameBoy::new(rom_data);

src/desktop.rs

glutin::event::Event::MainEventsCleared => window.request_redraw(),
glutin::event::Event::RedrawRequested(_) => {
 gb.frame();
 cx.draw(&gb);

gl_window.swap_buffers().unwrap();
}

src/desktop.rs

let event_loop: glutin::event_loop::EventLoop<()> =
glutin::event_loop::EventLoop::with_user_event();

let window_builder = glutin::window::WindowBuilder::new()
.with_title("GameBoy")
.with_inner_size(glutin::dpi::LogicalSize {

width: gb.width(),
height: gb.height(),

});

let gl_window = glutin::ContextBuilder::new()
.build_windowed(window_builder, &event_loop)
.unwrap();

let gl_window = unsafe { gl_window.make_current().unwrap() };

The
Game
Boy

A scan of the main logic board
for the DMG* 01 (Game Boy):
chipmusic.org/forums/topic/
13608/dmg-main-board-
schematic-circuit-arduinoboy/

DMG stands for “Dot Matrix Game”

Game Boy technical data

CPU - 8-bit (Similar to the Z80 processor)

Clock Speed - 4.194304MHz (4.295454MHz for SGB, max. 8.4MHz for CGB)

Work RAM - 8K Byte (32K Byte for CGB)

Video RAM - 8K Byte (16K Byte for CGB)

Screen Size - 2.6"

Resolution - 160x144 (20x18 tiles)

Max sprites - Max 40 per screen, 10 per line

Sprite sizes - 8x8 or 8x16

Palettes - 1x4 BG, 2x3 OBJ (for CGB: 8x4 BG, 8x3 OBJ)

Colors - 4 grayshades (32768 colors for CGB)

Horiz Sync - 9198 KHz (9420 KHz for SGB)

Vert Sync - 59.73 Hz (61.17 Hz for SGB)

Sound - 4 channels with stereo sound

Power - DC6V 0.7W (DC3V 0.7W for GB Pocket, DC3V 0.6W for CGB)

Retired from http://bgb.bircd.org/pandocs.htm

Game Boys came in different
mainboard models, for
example, the DMG-CPU-03,
DMG-CPU-05 and DMG-
CPU-06.

Their differences are very
subtle for the programmers.

Input -> Process -> Output

Simplified GB hardware overview

Input

Photograph:

1. https://en.wikipedia.org/wiki/File:Game-Boy-Original.jpg

2. https://www.youtube.com/watch?v=lW9uKZE4yJ0

https://en.wikipedia.org/wiki/File:Game-Boy-Original.jpg
https://www.youtube.com/watch?v=lW9uKZE4yJ0

Photograph:

1. https://b13rg.github.io/Gameboy_DMG/

 Vol

 Ext Connector

https://b13rg.github.io/Gameboy_DMG/

Photograph:

1. https://b13rg.github.io/Gameboy_DMG/

 Jack to plug in external power

 Contrast

https://b13rg.github.io/Gameboy_DMG/

 Power On/Off

Photograph:

1. https://b13rg.github.io/Gameboy_DMG/

https://b13rg.github.io/Gameboy_DMG/

An interface for serial
communication and a
cartridge slot for game
cartridges

Image retired from: https://dhole.github.io/post/gameboy_serial_1/

https://dhole.github.io/post/gameboy_serial_1/

Input

Photograph:

1. https://www.polygon.com/2019/4/19/18295061/game-boy-history-timeline-tetris-pokemon-nintendo

 A
 B

 Start Select

 Right

 Up

 Left

 Down

https://www.polygon.com/2019/4/19/18295061/game-boy-history-timeline-tetris-pokemon-nintendo

src/gameboy/mod.rs

pub enum Button {
 A,
 B,
 Left,
 Right,
 Up,
 Down,
 Start,
 Select,
}

http://mod.rs

src/desktop.rs

if let Some(virt_keycode) = input.virtual_keycode {
 let button = match virt_keycode {
 VirtualKeyCode::A => Button::A,
 VirtualKeyCode::B => Button::B,
 VirtualKeyCode::Z => Button::Select,
 VirtualKeyCode::X => Button::Start,
 VirtualKeyCode::Left => Button::Left,
 VirtualKeyCode::Right => Button::Right,
 VirtualKeyCode::Down => Button::Down,
 VirtualKeyCode::Up => Button::Up,
 _ => {
 *control_flow = glutin::event_loop::ControlFlow::Poll;
 return;
 }
 };
 match input.state {
 ElementState::Pressed => gb.keydown(button),
 ElementState::Released => gb.keyup(button),
 }
}

src/web.rs

let current_key_code: Rc<RefCell<i32>> = Rc::new(RefCell::new(0));
{
 let key_code = current_key_code.clone();
 let closure =
 Closure::<dyn FnMut(_)>::new(move |event: KeyboardEvent| {
 *key_code.borrow_mut() = event.key_code() as i32;
 });
 add_event_listener(“keydown”, closure.as_ref().unchecked_ref());
 closure.forget();

 let key_code = current_key_code.clone();
 let closure =
 Closure::<dyn FnMut(_)>::new(move |event: KeyboardEvent| {
 *key_code.borrow_mut() = (event.key_code() as i32) * -1;
 });
 add_event_listener(“keyup", closure.as_ref().unchecked_ref());
 closure.forget();
}

src/web.rs

let key: RefMut<_> = key_code.borrow_mut();
match *key {
 // A
 65 => gb.keydown(Button::A), -65 => gb.keyup(Button::A),
 // S
 83 => gb.keydown(Button::B), -83 => gb.keyup(Button::B),
 // Z
 90 => gb.keydown(Button::Select), -90 => gb.keyup(Button::Select),
 // X
 88 => gb.keydown(Button::Start), -88 => gb.keyup(Button::Start),
 // Left
 37 => gb.keydown(Button::Left), -37 => gb.keyup(Button::Left),
 // Right
 39 => gb.keydown(Button::Right), -39 => gb.keyup(Button::Right),
 // Up
 38 => gb.keydown(Button::Up), -38 => gb.keyup(Button::Up),
 // Down
 40 => gb.keydown(Button::Down), -40 => gb.keyup(Button::Down),
 _ => (),
}
gb.frame();

FF00 | P1 | Joypad (R/W)

5 | P15 | Select Button Keys
4 | P14 | Select Direction Keys
3 | P13 | Input Down / Start
2 | P12 | Input Up / Select
1 | P11 | Input Left / Button B
0 | P10 | Input Right / Button A

Input

 A
 B

 Start Select

 Right

 Up

 Left

 Down

Processing

Photograph:

1. https://raphaelstaebler.medium.com/building-a-gameboy-from-scratch-part-2-the-cpu-d6986a5c6c74

https://raphaelstaebler.medium.com/building-a-gameboy-from-scratch-part-2-the-cpu-d6986a5c6c74

1. Retired from https://b13rg.github.io/Gameboy_DMG/

8kb VRAM

8kb RAM

Amp

Crystal

https://b13rg.github.io/Gameboy_DMG/

•0x0000 - 0x00FF: Boot ROM
•0x0000 - 0x3FFF: Game ROM Bank 0
•0x4000 - 0x7FFF: Game ROM Bank N
•0x8000 - 0x97FF: Tile RAM (VRAM)
•0x9800 - 0x9FFF: Background Map (VRAM)
•0xA000 - 0xBFFF: Cartridge RAM
•0xC000 - 0xDFFF: Working RAM (WRAM)
•0xE000 - 0xFDFF: Echo RAM
•0xFE00 - 0xFE9F: OAM (Object Attribute Memory)
•0xFEA0 - 0xFEFF: Unused
•0xFF00 - 0xFF7F: I/O Registers
•0xFF80 - 0xFFFE: High RAM Area (HRAM)
•0xFFFF: Interrupt Enabled Register

Memory Map (16-bit address bus)

Retired from
raphaelstaebler.medium
.com/memory-and-
memory-mapped-i-o-of-
the-gameboy-part-3-of-
a-series-37025b40d89b

Memory Map
(Simplified)

Work RAM (8 KB / WRAM)
• General purpose usage
• Four times larger NES Work RAM (2KB)

Display RAM (8 KB / VRAM)
• Contain most of the data to render graphics
• Basically tile data and tile maps

src/mmu.rs

const WRAM_SIZE: usize = 0x8000;
const ZRAM_SIZE: usize = 0x7F;

pub struct MemoryManagementUnit {
 wram: [u8; WRAM_SIZE],
 zram: [u8; ZRAM_SIZE],
 wrambank: usize,
 pub inte: u8,
 pub intf: u8,
 pub input: Input,
 pub gpu: Gpu,
 pub mbc: MemoryBankController,
}

src/mmu.rs

pub fn new(data: Vec<u8>) -> MemoryManagementUnit {
 let mbc = MemoryBankController::new(data);

 let mut res = MemoryManagementUnit {
 wram: [0; WRAM_SIZE],
 zram: [0; ZRAM_SIZE],
 wrambank: 1,
 inte: 0,
 intf: 0,
 input: Input::default(),
 gpu: Gpu::new(),
 mbc,
 };

res.write_byte(0xFF05, 0);
res.write_byte(0xFF06, 0);
res.write_byte(0xFF07, 0);
res.write_byte(0xFF10, 0x80);
res.write_byte(0xFF11, 0xBF);
res.write_byte(0xFF12, 0xF3);
res.write_byte(0xFF14, 0xBF);
res.write_byte(0xFF16, 0x3F);
res.write_byte(0xFF16, 0x3F);
res.write_byte(0xFF17, 0);
res.write_byte(0xFF19, 0xBF);
res.write_byte(0xFF1A, 0x7F);
res.write_byte(0xFF1B, 0xFF);
res.write_byte(0xFF1C, 0x9F);
res.write_byte(0xFF1E, 0xFF);
res.write_byte(0xFF20, 0xFF);

res.write_byte(0xFF21, 0);
res.write_byte(0xFF22, 0);
res.write_byte(0xFF23, 0xBF);
res.write_byte(0xFF24, 0x77);
res.write_byte(0xFF25, 0xF3);
res.write_byte(0xFF26, 0xF1);
res.write_byte(0xFF40, 0x91);
res.write_byte(0xFF42, 0);
res.write_byte(0xFF43, 0);
res.write_byte(0xFF45, 0);
res.write_byte(0xFF47, 0xFC);
res.write_byte(0xFF48, 0xFF);
res.write_byte(0xFF49, 0xFF);
res.write_byte(0xFF4A, 0);
res.write_byte(0xFF4B, 0);

Map of the
initial memory

src/mmu.rs

src/mmu.rs

pub fn read_byte(&mut self, address: u16) -> u8 {
 match address {
 0x0000..=0x7FFF => self.mbc.readrom(address),
 0x8000..=0x9FFF => self.gpu.read_byte(address),
 0xC000..=0xCFFF | 0xE000..=0xEFFF =>
self.wram[address as usize & 0x0FFF],
 0xD000..=0xDFFF | 0xF000..=0xFDFF => {
 self.wram[(self.wrambank * 0x1000) | address as
usize & 0x0FFF]
 }
 0xFE00..=0xFE9F => self.gpu.read_byte(address),
 0xFF00 => self.input.read_byte(),
 0xFF0F => self.intf | 0b11100000,
 0xFF40..=0xFF4F => self.gpu.read_byte(address),
 0xFF68..=0xFF6B => self.gpu.read_byte(address),
 0xFF70 => self.wrambank as u8,
 0xFF80..=0xFFFE => self.zram[address as usize &
0x007F],
 0xFFFF => self.inte,
 _ => 0xFF,
 }
 }

Note: This memory is
incomplete and only
works for our game

Memory Bank Controllers (MBC)
As the Game Boy 16 bit address bus offers only limited space for
ROM and RAM addressing, many games are using Memory Bank
Controllers (MBCs) to expand the available address space by bank
switching.

These MBC chips are located in the game cartridge

(ie. not in the Game Boy itself).

Retired from https://gbdev.io/pandocs/MBCs.html

Memory Bank Controllers

Is necessary?

Small games of not more than 32 KiB ROM do not require a MBC chip for ROM
banking. The ROM is directly mapped to memory at $0000-7FFF. Optionally up to
8 KiB of RAM could be connected at $A000-BFFF, using a discrete logic decoder
in place of a full MBC chip.

Retired from https://gbdev.io/pandocs/MBCs.html

However our game requires more than 32KiB!

Just a reminder that a kilobyte and a kibibyte are not the same.

The next available
MBC for our game is
MBC1.

We will implement a
simple "variant" of MBC1
because in our game we
only care about some very
specific data from the rom

pub struct MemoryBankController {
 rom: Vec<u8>,
 rombank: usize,
 rombanks: usize,
}

impl MemoryBankController {
 pub fn new(rom: Vec<u8>) -> Self {
 Self {
 rom,
 rombank: 1,
 rombanks: 8,
 }
 }
 pub fn readrom(&self, a: u16) -> u8 { &0xFF }
 pub fn writerom(&mut self, a: u16, v: u8) {}
}

1. Retired from https://b13rg.github.io/Gameboy_DMG/

DMG-CPU

https://b13rg.github.io/Gameboy_DMG/

The name for the entire system on chip
(SoC) is Sharp LR35902 while the
microprocessor name is Sharp SM83 (8-
bit CPU core).

* https://github.com/Gekkio/gb-research/tree/main/sm83-cpu-core

The Game Boy CPU is actually a hybrid between the
Intel 8080 and the Zilog Z80.

Intel 8080 Zilog Z80

The Z80 was designed to be binary compatible with the already existing Intel 8080. So, the
instruction set found in the 8080 was also implemented by the Z80.

Zilog Z80 introduced functionalities and features with
binary compatibility to Intel 8080 (of course a lot
those didn’t make through GB CPU).

Intel Zilog Z80

From the nice features, one was very important for
GB’s CPU: A special instruction that allowed for an
extra 256 instruction set.

Intel Zilog Z80

If you have any interest in learn more about both microprocessors:

- https://www.zilog.com/docs/z80/um0080.pdf

- http://archive.computerhistory.org/resources/text/Oral_History/

Zilog_Z80/102658073.05.01.pdf

- https://manualsbrain.com/en/manuals/2697505/

- https://archive.org/details/Mcs80_85FamilyUsersManual

Intel 8080 Zilog Z80

https://www.zilog.com/docs/z80/um0080.pdf
http://archive.computerhistory.org/resources/text/Oral_History/Zilog_Z80/102658073.05.01.pdf
http://archive.computerhistory.org/resources/text/Oral_History/Zilog_Z80/102658073.05.01.pdf
https://manualsbrain.com/en/manuals/2697505/
https://archive.org/details/Mcs80_85FamilyUsersManual

The processor is connected to most of the elements on the board.

It contains a single address space and doesn’t have extended
address modes beyond 8-bits.

It also relies on a program counter to read the states of I/O from
special places of mapped memory instead of having special
instructions to access I/O input.

The Game Boy CPU (as Intel 8080 and Zilog Z80)

have an extremely simple way of executing a program

(in terms of interpretation of instructions for every byte the processor reads)

1. Bytes from memory are read according to the value held by the
Program Counter (‘PC’) register

2. Eight 8-bit registers: A, B, C, D, E, F, H, L

3. Two 16-bit registers: PC and SP (‘Stack Pointer’)

src/cpu/registers.rs

pub struct Registers {
 pub a: u8,
 pub b: u8,
 pub c: u8,
 pub d: u8,
 pub e: u8,
 pub h: u8,
 pub l: u8,
 pub f: u8,
 pub pc: u16,
 pub sp: u16,
}

Retired from https://gbdev.io/pandocs/CPU_Registers_and_Flags.html

Retired from pastraiser.com/cpu/gameboy/gameboy_opcodes.html

http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html

Retired from pastraiser.com/cpu/gameboy/gameboy_opcodes.html

http://pastraiser.com/cpu/gameboy/gameboy_opcodes.html

0x00 => 1,
0x01 => {
 let value = self.memory.read_word(self.registers.pc);
 self.registers.pc = self.registers.pc.wrapping_add(2);
 cpu.registers.b = (value >> 8) as u8;
 cpu.registers.c = (value & 0x00FF) as u8;
 3
}

src/cpu/mod.rs

let byte = self.memory.read_byte(self.registers.pc);
self.registers.pc = self.registers.pc.wrapping_add(1);
let ticks = match byte {
 0x00 => 1,
 0x01 => { ld::bcnn(self); 3 }
 0x02 => { ld::bcm_a(self); 2 }
 0x03 => { data::incbc(self); 2 }

 // … (rest of the instructions)

 0xFF => { stack::rst(self, 0x38); 4 }
 _ => { panic!("{:#06x} not implemented", op);
}
self.memory.cycle(ticks * 4);

Interrupts
Interrupt register is just an 8 bit value consisting of flags
(single bits) to indicate what kind of interrupts are
enabled.

It interrupt the current program flow in response to
certain events.

Interrupts
We saw the CPU executes the instruction the program
counter is pointing to. However whenever an interrupt is
put in action it will move the PC to the stack and run a
opcodes based on that interrupt.

The Game Boy has interrupts for modules besides the
CPU (like GPU and Button inputs).

Instruction A Instruction B Instruction C Instruction D

Interrupt instruction A -> Interrupt instruction B

Output

* Super Mario Land is a 1989 platform
video game, and it was developed and
published by Nintendo

Internal speaker with

mono sound output

headphone jack with support
for stereo sound

The audio system is carried out by the
Audio Processing Unit (APU). APU is
a Programmable Sound Generator
with four channels.

Pulse waves have a very distinct beep
sound that is mainly used for melody
or sound effects.

Retired from: https://www.copetti.org/writings/
consoles/game-boy

The audio system is carried out by the
Audio Processing Unit (APU). APU is
a Programmable Sound Generator
with four channels.

Pulse waves have a very distinct beep
sound that is mainly used for melody
or sound effects.

Retired from: https://www.copetti.org/writings/
consoles/game-boy

160x144 pixel display
Liquid crystal screen (LCD)

The display uses a
monochrome 4-shade palette.

Because the non-backlit LCD
display background is
greenish, this results in a
"greenscale" graphic display.

Retired from: https://en.wikipedia.org/wiki/
List_of_video_game_console_palettes

https://en.wikipedia.org/wiki/List_of_video_game_console_palettes
https://en.wikipedia.org/wiki/List_of_video_game_console_palettes
https://en.wikipedia.org/wiki/List_of_video_game_console_palettes

For example:

This is what would look like

if the classic gameboy had a
IPS v4 Backlit LCD Screen.

All graphics calculations are done by the CPU, and then the
Picture Processing Unit or ‘PPU’ renders them.

Retired from: https://www.copetti.org/writings/consoles/game-boy

It uses tiles for rendering
graphs, dividing by
background and
sprites.

Tile set

8x8 bitmaps stored in VRAM in a
region called Tile set.

In order to build the picture, tiles are
referenced in another type of table
known as tile map.

PPU*

* We will need partial functionalities
of the PPU for our game.

LCD Control
LCD Display enable

Window Tile Map Address

Window Enable

BG & Window Tile Data

BG Tile Map Address

OBJ Size

OBJ Enable

BG Enable

LCDC Status
LYC=LY Interrupt

Mode 2 OAM Interrupt

Mode 1 V-Blank Interrupt

Mode 0 H-Blank Interrupt

LYC=LY Flag

Mode

Scroll Y
Scroll X
LCDC Y-Coordinate
LY Compare
DMA Transfer and Start
BG Palette
Object Palette 0
Object Palette 1
Window Y Position
Window X Position

Retired from https://github.com/torch2424/wasmboy

Background Map with Scrolling

(Using scroll Y and scroll X)

Basically it specify the coordinate
of the screen's top-left pixel
somewhere on the 256x256 pixel
background map.

PPU contains all logic about display.
In this example you can see
background map with scrolling

Retired from https://github.com/torch2424/wasmboy

Background Map with Scrolling

(Using scroll Y and scroll X)

Basically it specify the coordinate
of the screen's top-left pixel
somewhere on the 256x256 pixel
background map.

PPU contains all logic about display.
In this example you can see
background map with scrolling

Retired from https://www.youtube.com/watch?v=HyzD8pNlpwI

Object Attribute Memory (OAM)

Retired from https://gbdev.gg8.se/wiki/articles/OAM_DMA_tutorial

The Game Boy PPU can display up to 40 movable objects (or
sprites), each 8×8 or 8×16 pixels.

src/ppu.rs

enum Mode {
 HBlank = 0x00,
 VBlank = 0x01,
 RdOam = 0x02,
 RdVram = 0x03,
}

src/ppu.rs

pub fn read_byte(&self, address: u16) -> u8 {
 match a {
 0x8000..=0x9FFF => {
 self.vram[(self.vrambank * 0x2000) |

(address as usize & 0x1FFF)]
 }
 0xFE00..=0xFE9F =>

self.voam[address as usize - 0xFE00],
// …

cargo run

Desktop

Desktop

cargo build
—target wasm32-unknown-unknown —lib
wasm-bindgen

./target/wasm32-unknown-unknown/debug/web.wasm

—out-dir wasm —target web —no-typescript

cargo server —open

cargo install cargo-server
cargo install wasm-bindgen-cli

Web

Web

There is so much more

http://bgb.bircd.org/pandocs.htm

https://github.com/mvdnes/rboy

https://github.com/raphamorim/gameboy

https://github.com/alexcrichton/jba/tree/rust

https://github.com/gbdev/pandocs

http://imrannazar.com/GameBoy-Emulation-in-JavaScript:-The-CPU

https://multigesture.net/articles/how-to-write-an-emulator-chip-8-interpreter/

http://emubook.emulation64.com/

https://github.com/jawline/Mimic

https://www.youtube.com/watch?v=LqcEg3IVziQ

https://en.wikipedia.org/wiki/Zilog_Z80

https://en.wikipedia.org/wiki/Game_Boy

https://medium.com/@andrewimm/writing-a-game-boy-emulator-in-wasm-part-1-1ba023eb2c7c

There is so much more (2)
https://gbdev.gg8.se/wiki/articles/Gameboy_Bootstrap_ROM

https://github.com/yodalee/ruGameboy

https://www.youtube.com/watch?v=LqcEg3IVziQ

https://realboyemulator.wordpress.com/2013/01/01/the-nintendo-game-boy-1/

https://gbdev.gg8.se/wiki/articles/DMG_Schematics

https://chipmusic.org/forums/topic/13608/dmg-main-board-schematic-circuit-arduinoboy/

https://github.com/torch2424/wasmboy/

https://rylev.github.io/DMG-01/public/book/introduction.html

https://github.com/gbdev/awesome-gbdev

http://marc.rawer.de/Gameboy/Docs/GBProject.pdf

https://shonumi.github.io/dandocs.html

https://github.com/Baekalfen/PyBoy/blob/master/PyBoy.pdf

https://media.ccc.de/v/rustfest-rome-3-gameboy-emulator

https://github.com/rylev/DMG-01

Obrigado!
Thank you!

