
Björn Wieczoreck, RustLab, 10.11.2024

Generating ergonomic C++ APIs 
using Rustdoc, procedural macros, 

and Serde



GST | Geosciences in Space and Time

Masters in Geoinformationscience 

Work for GiGa infosystems GmbH since 2017 

Working with Rust for over 8 years now 

SwishSwushPow@mastodon.social

It’s me, hi!

A little bit about myself

2

mailto:SwishSwushPow@mastodon.social


GST | Geosciences in Space and Time

Foreign Function Interface 

Allows one language to call code written in another language 

Rust needs widespread adoption at companies of all sizes 

Existing code-bases will have to communicate with Rust code 

Ideal properties 

Small amount of boilerplate required 

(Almost) no negative performance impact 

Ergonomic to use

An important piece of the puzzle

Why are FFIs important?

3



GST | Geosciences in Space and Time

Our Rust journey started in 2016 

Fully replaced C++/SQL backend 

At GiGa infosystems we have: 

DBMS for storing 3D geoscientific 

models, written in Rust 

Desktop application written in C++ 

Web apps using Rust through WASM 

Standalone Rust helper apps

Fearless/foolish adoption of Rust from the start

And what experience do we bring to the table?

4



GST | Geosciences in Space and Time

What have we used in the past?

Our journey so far

5

cbindgen (custom fork) 

Generated not the best C++ code (String encoding, Windows-1252 <-> UTF-8) 

Rust 

String encoding 

Type conversions 

Manual deallocation 

A lot of unsafe code (manual pointer handling) 

Extern „C“-functions were calling Rust code and handling all of the above



GST | Geosciences in Space and Time

Examples

Our journey so far

6



GST | Geosciences in Space and Time

Examples

Our journey so far

7



GST | Geosciences in Space and Time

Examples

Our journey so far

8



GST | Geosciences in Space and Time

What other approaches have we considered?

Our journey so far

9

Cxx 

Bad error propagation 

Enum support not enough 

safer_ffi 

Big adjustments for our C++ code required 

We have to free things manually 

Diplomat 

We would have to roll with a fork as well 

Issues with String support in structs



GST | Geosciences in Space and Time

How has it evolved?

Our journey so far

10

Worked on error propagation and tracing 

Added Rust API „after the fact“ (extern „C“ functions were rewritten) 

Tried to handle remaining issues as well as possible 

Monitored new opportunities 

Slowly we have gained a clear picture what we would like/need



GST | Geosciences in Space and Time

How has it evolved?

Our journey so far

11

Worked on error propagation and tracing 

Added Rust API „after the fact“ (extern „C“ functions were rewritten) 

Tried to handle remaining issues as well as possible 

Monitored new opportunities 

Slowly we have gained a clear picture what we would like/need



GST | Geosciences in Space and Time

What are our goals?

Generating ergonomic C++ APIs

12

Cut down boilerplate 

No manual conversion of types 

No manual deallocation 

No weird String handling 

Contain unsafe code somewhere safe 

Make it nice to use from a C++ perspective 

Don’t lose too much performance



GST | Geosciences in Space and Time

Types create many headaches 

We replace (almost) all input/output types with byte buffers

Key idea: Replace all types with byte buffers

Generating ergonomic C++ APIs

13

Serialization

C-API with 
byte buffers

C++ 
Types

Rust 
Types

Deserialization

SerializationDeserialization

Input arguments

Function results



GST | Geosciences in Space and Time

1. Procedural macros -> generate extern „C“ fns from Rust API 

2. Rustdoc + rustdoc-types -> parse the generated code from above 

3. serde-reflection + serde-generate -> use rustdoc-types input to generate C/C++ code 

Serde/Bincode to de-/serialize input/output into byte buffers to not worry about types

Our approach

Generating ergonomic C++ APIs

14



GST | Geosciences in Space and Time

Procedural macros -> extern „C“ fn

Generating ergonomic C++ APIs

15

Our extern „C“ functions dealt a lot with types and their conversion 

Using Serde/Bincode makes these functions very similar 

Procedural macro allows us to cut down boilerplate



GST | Geosciences in Space and Time

Procedural macros -> extern „C“ fn

Generating ergonomic C++ APIs

16

Result of macro expansion (single step) 

Input and output types are turned into byte buffers



GST | Geosciences in Space and Time

Procedural macros -> extern „C“ fn

Generating ergonomic C++ APIs

17



GST | Geosciences in Space and Time

Procedural macros -> extern „C“ fn

Generating ergonomic C++ APIs

18



GST | Geosciences in Space and Time19

No more 
proc macros!



GST | Geosciences in Space and Time

Now we have to generate the C/C++ side of things 

We need an understanding of 

The functions we have added 

The types we used 

Whether a function is part of an „impl“ block or not

Rustdoc, JSON, and rustdoc-types

Generating ergonomic C++ APIs

20



GST | Geosciences in Space and Time

Rustdoc, JSON, and rustdoc-types

Generating ergonomic C++ APIs

21



GST | Geosciences in Space and Time

Usually Rustdoc generates HTML output (as seen on docs.rs) 

Rustdoc also has unstable JSON output format 

rustdoc-types can read this (with serde) 

We generate this JSON for our own crates and relevant external dependencies 

??? 

Profit

Rustdoc, JSON, and rustdoc-types

Generating ergonomic C++ APIs

22

http://docs.rs


GST | Geosciences in Space and Time

Rustdoc, JSON, and rustdoc-types

Generating ergonomic C++ APIs

23



GST | Geosciences in Space and Time

Now we only have to find the relevant functions and types …

Rustdoc, JSON, and rustdoc-types

Generating ergonomic C++ APIs

24



GST | Geosciences in Space and Time

Now we only have to find the relevant functions and types …

Rustdoc, JSON, and rustdoc-types

Generating ergonomic C++ APIs

25



GST | Geosciences in Space and Time

Now we only have to find the relevant functions and types …

Rustdoc, JSON, and rustdoc-types

Generating ergonomic C++ APIs

26



GST | Geosciences in Space and Time

Challenge is to work through the tree and find the right types 

Include external dependencies if necessary 

For the types 

Convert them into serde-reflection types 

Put the result into serde-generate 

For the functions 

Not so „easy“, but only dealing with byte buffers helps a lot 

Put together the C declarations and C++ functions manually

rustdoc-types -> serde-reflect/serde-generate

Generating ergonomic C++ APIs

27



GST | Geosciences in Space and Time

In summary we write these files 

binary.hpp and bincode.hpp (for Bincode) 

serde.hpp (for Serde) 

api_functions.hpp (C-API with byte buffers) 

types.hpp (includes all the types) 

testclient.hpp (C++ functions with actual input/output types and de-/serialization) 

free_standing_functions.hpp (C++ functions not from an „impl“ block)

rustdoc-types -> serde-reflect/serde-generate

Generating ergonomic C++ APIs

28



GST | Geosciences in Space and Time

api_functions.hpp

Generating ergonomic C++ APIs

29



GST | Geosciences in Space and Time

testclient.hpp

Generating ergonomic C++ APIs

30



GST | Geosciences in Space and Time

testclient.hpp

Generating ergonomic C++ APIs

31



GST | Geosciences in Space and Time

Use custom types for Result and Errors 

Result -> Result_String_SerializableError 

Holds Ok and Err variants, they implement the same De-/Serialization as other types 

Error -> SerializableError 

Holds additional info such as tracing 

Error type should be replaceable in the future

Custom error and result types

Generating ergonomic C++ APIs

32



GST | Geosciences in Space and Time33

More complex 
example



GST | Geosciences in Space and Time

More complex example

Generating ergonomic C++ APIs

34



GST | Geosciences in Space and Time

More complex example (proc macro expansion)

Generating ergonomic C++ APIs

35



GST | Geosciences in Space and Time

types.hpp - Struct

Generating ergonomic C++ APIs

36



GST | Geosciences in Space and Time

testclient.hpp

Generating ergonomic C++ APIs

37



GST | Geosciences in Space and Time

Upsides 

No explicit type conversions 

No exposed unsafe code 

No pointer handling 

No explicit deallocations 

Downsides 

Lose a bit of performance 

No directly „useable“ C-API

Up- and downsides

Generating ergonomic C++ APIs

38



GST | Geosciences in Space and Time

Just released this week 

„buffi“ and „buffi_macro“ 

Rustdoc type resolving has grown organically 

Work together to make this more universally applicable 

Recommended for production? 

Stabilization of Rustdoc JSON output would be huge! 

Otherwise RUSTC_BOOTSTRAP or a (specific) nightly toolchain has to be used

BuFFI is now available on crates.io

You can give this a try today!

39

http://crates.io


GST | Geosciences in Space and Time

„buffi“ and `buffi_macro` on crates.io 

Mastodon 

SwishSwushPow@mastodon.social 

weiznich@social.weiznich.de 

GitHub: https://github.com/GiGainfosystems/buffi 

Email: bjoern.wieczoreck@giga-infosystems.com 

Or just approach us during the conference!

And don’t miss anything

Follow along!

40

http://crates.io
mailto:SwishSwushPow@mastodon.social
mailto:weiznich@social.weiznich.de
https://github.com/GiGainfosystems/buffi
mailto:bjoern.wieczoreck@giga-infosystems.com


GST | Geosciences in Space and Time

„String::clone“ Benchmark (String goes in and is returned) 

„format!“ Benchmark (String goes in and is used in format! call, combined String is returned)

A bit of benchmarking

Generating ergonomic C++ APIs

41


