
1

ANGELO RENDINA
Senior Software Engineer @ Prima Assicurazioni

The Guard
Pattern

2

The Guard Pattern

Index

1. Motivation: Mutex

2. RAII

3. Use case: PGMutex

4. Use case: Kernel ScopeGuard

5. Final remarks

3

Mutex

Section 1

4

Thread 1

Thread 2

Heap
Data race: UB!

5

Thread 1

Thread 2

Heap

Mutex

Ensures only one access
at a time

6

Mutex::acquire(&mut self) -> &mut T {
 while self.locked { … }

 self.locked = true;
 &mut self.inner
}

Mutex::unlock(&mut self) {
 self.locked = false;
}

T1 calls acquire T2 calls acquire

T1 gets &mut T

T1 calls unlock T2 gets &mut T

T2 calls unlock
Who calls this?

What if forgotten?

Does not support
simultaneous callers

7

Mutex::acquire(&self) -> LockGuard<T> {
 while self.locked { … }

 self.locked = true;
 LockGuard::new(&self)
}

LockGuard::deref_mut(&mut self) -> &mut T {
 &mut self.mutex.inner
}

LockGuard::drop(&mut self) {
 self.mutex.locked = false;
}

T1 calls acquire T2 calls acquire

T1 gets LockGuard

LockGuard drops T2 gets LockGuard

LockGuard drops
Automatic
clean-up

Only one at a time

Needs interior mutabilty

Access to
the

resource

8

RAII

Section 2

9

RAII

Resource Acquisition Is Initialisation

Holding a valid resource is an invariant of the type.

An instance is only acquired after successful allocation
and initialisation of the resource.

The resource is deallocated at the end of the lifetime of
the instance.

10

Box::new(value: T) -> Self {
 let ptr = alloc(…);
 ptr.write(value);
 Self(ptr)
}

Box::drop(&mut self) {
 self.ptr.drop();
 dealloc(self.ptr);
}

The existence of a Box instance is proof
that the value is valid, on the heap and

owned by Self

Drop is called at most once,
so no double free

Heap

Box

11

Guard

Object that manages a resource and provides
compile-time proof of some invariants.

struct LockGuard<'a, T> {

 mutex: &'a Mutex<T>,

}
access to the underlying data

mutex unlocked on drop

constructed when mutex is
successfully locked

compiler guarantees mutex
outlives the guard

12

PGMutex

Section 3

13

Task 1

Task 2

Postgres Database

PGMutex

14

PGMutex::acquire(
 conn: PGConn,
 id: UUID,
) -> LockGuard<T> {
 conn.set_advisory_lock(id).await;
 LockGuard { conn, id }
}

LockGuard::update(
 &mut self,
 value: T,
) {
 self.conn.update(self.id, value);
}

LockGuard::drop(&mut self) {
 self.conn.release_advisory_lock(
 self.id
);
}

C2 acquires lock

C1 requests lock C2 requests lock

C1 acquires lock

LockGuard drops

LockGuard drops
one day, this will be

async

awaits until the DB has
set the advisory lock

can only read/write if
holding the advisory lock

15

EventStoreLock

We have used the PGMutex concept in the
event_sourcing.rs library.

Implements pessimistic locking on an aggregate stream.

Source:
https://github.com/primait/event_sourcing.rs/blob/ce
4fdf8fbf2e0f9b72c4a17796ce2372c78bc62d/src/store/
postgres/event_store.rs#L176-L186

https://github.com/primait/event_sourcing.rs/blob/ce4fdf8fbf2e0f9b72c4a17796ce2372c78bc62d/src/store/postgres/event_store.rs#L176-L186
https://github.com/primait/event_sourcing.rs/blob/ce4fdf8fbf2e0f9b72c4a17796ce2372c78bc62d/src/store/postgres/event_store.rs#L176-L186
https://github.com/primait/event_sourcing.rs/blob/ce4fdf8fbf2e0f9b72c4a17796ce2372c78bc62d/src/store/postgres/event_store.rs#L176-L186

16

struct PgStoreLockGuard {
 lock: PgAdvisoryLock,
 #[borrows(lock)]
 #[covariant]
 guard: PgAdvisoryLockGuard<

'this, Connection<Postgres>
 >,
}

async fn lock(&self, aggregate_id: Uuid)
-> Result<EventStoreLockGuard, Self::Error> {
 let (key, _) = aggregate_id.as_u64_pair();
 let connection = self.inner.pool.acquire().await?;
 let lock_guard = PgStoreLockGuardAsyncSendTryBuilder {
 lock: PgAdvisoryLock::with_key(PgAdvisoryLockKey::BigInt(key as i64)),
 guard_builder: |lock: &PgAdvisoryLock| Box::pin(async move {

lock.acquire(connection).await
 }),

 }
 .try_build()
 .await?;
 Ok(EventStoreLockGuard::new(lock_guard))
}

yields when the DB has
set the lock

information
about the lock

captures the connection

calls the DB and releases the
advisory lock on drop

async operation, flushed as the
connection returns to the pool

17

Lessons learnt

Connection pool exhaustion: acquire hogs the
connection until the advisory lock is set, without doing
any work.

Learn from std: Mutex has a try_acquire that returns
immediately if the lock is not acquired.

Synchronisation is hard: on high contention, optimistic
locking might be more suitable.

18

Kernel ScopeGuard

Section 4

19

Source: https://rust.docs.kernel.org/kernel/types/struct.ScopeGuard.html

pub struct ScopeGuard<F: FnOnce>(Option<F>);

impl<F: FnOnce> Drop for ScopeGuard<F> {
 fn drop(&mut self) {
 if let Some(f) = self.0.take() {
 f()
 }
 }
}

impl<F: FnOnce> ScopeGuard<F> {
 pub fn dismiss(mut self) {
 self.0 = None;
 }
}

unless explicitly
dismissed

Kernel ScopeGuard

wraps a FnOnce when
constructed

which is executed on
drop

consumes self

drop is called here, but the callback has
been removed

https://rust.docs.kernel.org/kernel/types/struct.ScopeGuard.html

20

ScopeGuard

fn example(arg: bool) {
 let log = ScopeGuard::new(|| pr_info!("example returned early\n"));

 if arg {
 return;
 }

 // (Other early returns...)

 log.dismiss();
}

disarm the
callback

closure executed
here

and here

no logs here

21

fn example(arg: bool) -> Result {
 let mut vec =
 ScopeGuard::new_with_data(Vec::new(),

|v| pr_info!("vec had {} elements\n", v.len()));

 vec.push(10u8, GFP_KERNEL)?;
 if arg {
 return Ok(());
 }

 vec.push(20u8, GFP_KERNEL)?;
 Ok(())
}

ScopeGuard

can manage data

logs 1 element

logs 2 elements

22

Final remarks

Section 5

23

Caveats

Affine types: Rust guarantees drop is invoked at most
once. It is safe and allowed to forget an object, which
will not call its destructor.

No async drop: currently it is not possible to run async
code in the destructor, which might be desirable for
clean-up operations.

24

Guards provide proof of some invariants for the data
they manage, during their lifecycle.

Drop ensures automatic cleanup when the Guard goes
out of scope, or on panic.

Summary

25

Thank you!

