Stefan Baumgartner - oida.dev - deadparrot@mastodon.social - @deadparrot.bsky.social

Hero with a cape
On top a friendly dragon

Rescues a princess

On his long journey
He battles fierce animals

And rides a dolphin

What’s the deal with unsafe?

Should we be worried about proliferation of unsafe in Rust
code?

I've noticed that despite the Rust guarantees of safety, there is an awful lot of unsafe blocks,
functions and calls all over Rust code. Here is the definition or Rc , for example:

imp l<T> Rc<T> {
#[cfg(not{no global oom handling))]
#[stable(feature = "rustl", since = "1.0.0")]
pub fn new(value: T) -> Rc<T>
unsafe {
Self::from_inner|
Box::leak(Box::new(RcBox { strong: Cell::new(l), weak: Cell::new

.into(),

+

Don't know about you, but I'm not comfortable knowing that anytime | use Rc , there
something unsafely leaking (Box:: Lleak) In memory.

Code for RefCell alsoc
As does the mainstay data structure of Rust, Vec.

But maybe this unsafety proliferates only on the core language level, and doesn't spread to library
code? Nope, a quick search on some of the most well-known Rust libraries shows lots of

unsarte .
3680 in azul
147 in rayon

2 functions and 1 pattern match in ripgrep

25 In rust crypto

Is rust unsafe just moving the problem?

r/rust

(Warning: this post is written by a self taught nO0Ob whose day job is web development) | was
listening to _this podcast, and about the 35 minute mark, the interviewee says that Rust hasn't

really solved the problem for memory management, they have just shifted it.

| have a few questions about this comment. First, is memory management in game development
that much of a different problem than normal programming where the borrow checker doesn't
work for 95% of the cases? And isn't this the point of Rust's unsafe keyword? Most of your
programming can be handled with the borrow checker, and you can isolate the few places it
doesn't work to make sure those areas are contained away from the majority of your code ba
This is still a major advantage over C++ right (as far as memory management and reducing
memory leaks)? Second, | know there are some game engines for rust (or is it just godot?), but
they aren't yet in the place to replace Unity or the Unreal Engine. Do you think rust will replace
C++ for the majority of Game development?

Unsafe Rust

Somewhat new to Rust, and obviously what stands out is the compile-time guarantees, especially
concerning memory safety. I'm curious about the tradeoff though and the availability of “unsafe
Rust,” which seems to turn Rust into something closer to a modernized C++. How much do
people use "unsafe Rust"? How well does Rust work without these features for
distributed/multiproc systems?

e Unsafe code

= | ast resort
= Bypasses borrow checker completely

https:/www.reddit.com/r/rust/comments/iesj2v8/unsafe_rust/
https:/www.reddit.com/r/rust/comments/10x5s5k/is_rust_unsafe_just_moving the_problem/

https:/www.reddit.com/r/rust/comments/xcswut/should_we_be_worried_about_proliferation_of/

unsafe deactivates
the borrow checker

fn split<T>(slice: &[T], point: usize) —> (&I[T], &I[T]) {
(&slicel..point], &slice[point..])

fn split<T>(slice: &[T], point: usize) —> (&I[T], &I[T]) {
(&slicel..point], &slice[point..])

fn split_mut<T>(slice: &mut [T], point: usize) —> (&mut [T], &mut [T]) {
(&mut slicel..point], &mut slice[point..])

fn split<T>(slice: &[T], point: usize) —> (&I[T], &I[T]) {
(&slicel..point], &slice[point..])

fn split_mut<T>(slice: &mut [T], point: usize) —> (&mut [T], &mut [T]) {
(&mut slicel..point], &mut slice[point..])

5 | fn split_mut<T>(slice: &mut [T], point: usize) -> (&mut [T], &mut [T]) {
— let's call the lifetime of this reference '1
6 (&mut slicel..point], &mut slicelpoint..])

AAAAA

| second mutable borrow occurs here

first mutable borrow occurs here

returning this value requires that *slice 1is borrowed for '1

fn split_mut<T>(slice: &mut [T], point: usize) —-> (&mut [T], &mut [T]) {
unsafe { (&mut slicel..point], &mut slice[point..]) }

fn split_mut<T>(slice: &mut [T], point: usize) —-> (&mut [T], &mut [T]) {
unsafe { (&mut slicel..point], &mut slice[point..]) }

5 | fn split_mut<T>(slice: &mut [T], point: usize) -> (&mut [T], &mut [T]) {
— let's call the lifetime of this reference '1°
6 unsafe { (&mut slicel[..point], &mut slicelpoint..]) }

| second mutable borrow occurs here
first mutable borrow occurs here

returning this value requires that xslice 1is borrowed for 'l

A language superset

Unsafe Rust Allows

Dereferencing raw pointers

Calling unsafe functions and methods,

including extern
Implementing unsafe traits
Mutate static variables

Access unions

Pointer 'lypes

0 * The borrow checker is still enabled
T Owned Type %
< with the correct types: owned values,
ST Reference 0 P
& shared and mutable references —
Smut T Mutable Reference g
“borrows”
S
‘const T Raw Pointer] * There are more pointer types: Raw and
D
* ° O °
mut T Mutable Raw Pointer 3 mutable raw pointers! They are not

being checked by the borrow checker.

let mut v = [1, 2, 3, 4, 5];
let ptr = &raw mut v[0];

let ptr: *xmut 132 2,3, 4, 5];

let ptr = &raw mut v[0];

let mut v = [1, 2, 3, 4, 5];
let ptr = &raw const v[0];

_
N
- .

let mut v = [1, 2, 3, 4, 5];
let ptr = &raw const v[0];
println!("“{:?}", ptr);

0x16T0262a4

[t’s just C/C++all over again...

let mut v = [1, 2, 3, 4, 5];
let ptr = &raw mut v[0];

xptr = 9;
println! ("{:?}", *xptr);

let mut v = [1, 2, 3, 4, 5];
let ptr = &raw mut v[0];

brihtlh!i"{:?}", xptr);

error [EQ133]: dereference of raw pointer is unsafe and
requires unsafe function or block
——> src/main.rs:33:5

33 xptr = 9;
an dereference of raw pointer

= note: raw pointers may be null, dangling or unaligned;
they can violate aliasing rules and cause data races: all
of these are undefined behavior

let mut v = [1, 2, 3, 4, 5];
let ptr = &raw mut v[0];

unsafe { xptr = 9 };
printin!("{:?}", unsafe { xptr });

fn danging_pointer() {
let ptr: *const 132;

{
let value = 42,
ptr = &raw const value;
}
unsafe {
println! ("Dereferencing ptr: {}", *xptr);
}

fn danging_pointer() {
let ptr: *const 132;

{
let value = 42,
ptr = &raw const value;
}
unsafe {
println! ("Dereferencing ptr: {}", *xptr);
}
}
DEBUG UNDEFINED BEHAVIOUR RELEASE

> 472 > 24565

Unsate Blocks

* unsafe blocks allow dereferencing raw

pointers.
* They also allow calling of unsafe functions.

* For you as a developer this means: Make sure
you do the right thing and try to meet all

safety conditions.

fn danging_pointer() {
let ptr: xconst 132;

1
let value = 42;

ptr = &raw const value;

}

£ { // Thar be dragons!
println! ("Dereferencing ptr: {}", *ptr);
+

Unsafe blocks and functions

Contracts

unsafe fn Unsafe functions highlight that this
code might cause undefined behaviour.
This behaviour needs to be checked!

unsafe {7 * Unsafe blocks highlight that you as a

developer checked all preconditions to

run unsafe code.

unsafe moves safety checks from the
compiler to the developer

Explicit.

I again...

Safe abstractions

Safe abstractions for unsafe code

* Unsafe can’t be avoided, really.

 But it can be avoided to work with unsafe

entirely.

 Unsafe code calls for safe abstractions.

Alook at Bevy

* Bevy as a game engine has a lot of self-made
data structures that are optimised for

performance

* We take one example how Bevy uses unsafe to

make safety guarantees.

pub struct ThinArrayPtr<T> { Similar to "Vec<T>', but with the capacity

and length cut out for performance
data: NonNull<T>, —

NonNull<T>

xmut T but non-zero and covariant.

This 1s often the correct thing to use when
building data structures using raw
pointers,

https://doc.rust-lang.org/reference/subtyping.html

pub struct ThinArrayPtr<T> {
data: NonNull<T>,

} Creates a new NonNull that is dangling, but
well-aligned.
imp1l<T> ThinArrayPtr<T> { This is useful for initializing types which
fn empty() —> Self { lazily allocate, like Vec::new does.

Self {
data: NonNull::dangling(),
; pub const fn dangling() —> Self {

} // SAFETY: mem::align_of() returns a non-zero
// usize which is then casted
// to a xmut T. Therefore, ptr is not null
// and the conditions for
// calling new_unchecked() are respected.
unsafe {
let ptr = crate::ptr::dangling_mut::<T>();
NonNull: :new_unchecked(ptr)

pub struct ThinArrayPtr<T> {
data: NonNull<T>,

}
Creates a non-zero without checking whether the value
impl<T> ThinArrayPtr<T> { is non-zero. This results in undefined behaviour if the
fn empty() — Self A value is zero.
Self 1 : Safety
data: NonNull::dangling(),
1 The value must not be zero.
}

pub const unsafe fn new_unchecked(n: T) —> Self {

pub fn with_capacity(capacity: usize) —-> Self A [/

let mut arr = Self::empty(); ’

if capacity > 0 {
// SAFETY:
// — The "current_capacity 1is 0 because it was just created
unsafe { arr.alloc(NonZeroUsize: :new_unchecked(capacity)) };

arr

pub struct ThinArrayPtr<T> {
data: NonNull<T>,
#[cfg(debug_assertions)]
capacity: usize,

impl<T> ThinArrayPtr<T> {
fn empty() —> Self {
Self { P

data: NonNull::dangLiwgt)

usize)

) ;

pub fn with_capacity(capaciﬁ;:

let mut arr = Self::emptﬁ;
if capacity > 0 { \
// SAFETY:
// — The "current_capacity 1is 0 because it was just created

unsafe { arr.alloc(NonZeroUsize::new_unchecked(capacity)) };

arr

Safe abstractions you have used.

e Vec<T>
e Rc<T>, Arc<'T>
e Mutex<'I'>

e RwLock<T>

Unsafe for work

You're fine.
Really.

Unsafe Rust Allows

Dereferencing raw pointers

Calling unsafe functions and methods,

including extern
Implementing unsafe traits
Mutate static variables

Access unions

When do you need it.

 Hardware Access
o FFI

* Performance Optimisations

0 R = runtime — stefan.baumgartner@DT-CV9D4X4JDG — ../Rust/runtime — -zsh — 80x24

Language files blank comment code

Rust 194 7607 5596 51858
D 999 2508 0 13541
JSON 1103 %) %) 10664
TypeScript 56 664 18834 9772
Markdown 53 1361 1 3211
JavaScript 38 321 1093 1852
Groovy 2 113 109 891
TOML 30 96 9 854
PlantUML 10 137 2 623
YAML 20 19 24 521
Dockerfile 9 58 55 222
Protocol Buffers b 84 344 214
Bourne Shell 19 62 33 159
HTML 1 5 %) 90
LLVM IR 6 26 22 82
Python 1 18 19 65
Text 2 13 0 52
INI 1 3 %) 15
SUM 2549 13095 26141 94686

> runtime (main) v« J

1 occurence of actively using unsafe

@ R _ runtime — stefan.baumgartner@DT-CV9D4X4JDG — ../Rust/runtime — -zsh — 80x24

Language files blank comment code

Rust 194 7607 5596 51858
D 999 2508 0 13541
JSON 1103 0 0 10664
TypeScript 56 664 18834 9772
Markdown 53 1361 1 3211
JavaScript 38 321 1093 1852
Groovy 2 113 109 891

// SAFETY: Assumes that V8“passes a valid string pointeF-
let details_c_str = unsafe { CStr::from_ptr(details.detail) };
details_c_str.to_string_lossy()

HTML e 5 0 90
LLVM IR 6 26 22 82
Python 1 18 19 65
Text 2 13 0 52
INI L 3 0 15
SUM 2549 13095 26141 94686
> runtime (main) v« J

1 occurence of actively using unsafe

// SAFETY

-

2

MatsRivel -

| think people think you just write all low level rust code in an unsafe-block.

| am working on a microcontroller project in Rust for work, and | am not yet using unsafe
for anything, even when accessing memory directly (through the esp_idf_svc crate)

& 251 <5 (O Reply L2 Award > Share

L)

#e% FuckFN_Fabi

You are using a library that does the unsafe part for you... But it is great that many
crates provide a "safe" unsafe implementation

& ¢ 179 & (O Reply £ Award 2> Share

Sapiogram -

But it is great that many crates provide a "safe" unsafe implementation

This is a great point, and (imo) one of Rust's primary reasons for existing:
Allowing library authors to write safe abstractions on top of unsafe (In the Rust
sense) primitives. Of course, this requires a high level of trust in library authors,
put it's better than the alternative of every line of code being potentially unsafe.

e &) esp-idf-svc - crates.io: Rust X + v

4 8, [l % crates.io/crates/esp-idf-svc/0.49.1 o M d’ A © 9 4 0B

‘u crates.io Type 'S' or /" to search © BrowseAll Crates | @ Log in with GitHub

esp-idf-svc vo.49:

Implementation of the embedded-svc traits for ESP-IDF (Espressif's loT Development Framework)

ftembedded #esp32 #esp-idf #idf #svc

Readme 101 Versions Dependencies Dependents

Safe Rust wrappers for the services in :‘*‘“"a‘a
] 4 months ago

the ESP IDF SDK ® v1.77.0

& MIT or Apache-2.0
cates. o WOMSANY cocs espers m o morix EXEAIEE A 188 KiB

VW wokwi Click to Simulate

Install
Highlights Run the following Cargo command in your
project directory:
 Supports almost all ESP IDF services: timers, event loop, Wifi, Ethernet, cargo add esp-idf-
HTTP client & server, MQTT, WS, NVS, OTA, etc. svcR=0.49.1
e Implements the traits of embedded-svc
e Blocking and async mode for each service (async support where Or:add'the following line to your.Cargo.tomi:
feasible)

esp-idf-svc = "=0.49.1"
e Re-exports esp-idf-hal and esp-idf-sys as esp_idf_svc::hal and

esp_idf_svc::sys . You only need to depend on esp_idf_svc to get
everything you need Documentation

fn danging_pointer() {
let ptr: *const 132;

{
let value = 42;
ptr = &raw const value;
+
unsafe {
println! ("Dereferencing ptr: {}", *xptr);
+

$ cargo +nightly miri run

fn danging_pointer() {
let ptr: *const 132;

{

let value =

}

unsafe {

42
ptr = &raw const value;

println! ("Dereferencing ptr: {}", xptr);

¥

$ cargo +nightly m1

error: Undefined Behavior: out—-of-bounds pointer use: allocl905 has been freed, so this
pointer 1is dangling

15

Ca

——> src/main.rs:15:43

println! ("Dereferencing ptr: {}", xptr);

AN out—-of-bounds pointer use: allocl905
has been freed, so this pointer 1s
dangling

= help: this indicates a bug in the program: it performed an invalid operation, and
used Undefined Behavior

fn split_mut<T>(slice: &mut [T], point: usize) —> (&mut [T], &mut [T]) {
let ptr = slice.as_mut_ptr();
let len = slice.len();

unsafe {

(
from_raw_parts_mut(ptr, point),
from_raw_parts_mut(ptr.add(point), len - point),

$ cargo +nightly miri run

fn split_mut<T>(slice: &mut [T], point: usize) —> (&mut [T], &mut [T]) {
let ptr = slice.as_mut_ptr();
let len = slice.len():

unsafe {

(
from_raw_parts_mut(ptr, point),
from_raw_parts_mut(ptr.add(point), len - point),

$ cargo +nightly miri run

Havoc.

fn split_mut<T>(slice: &mut [T], point: usize) —> (&mut [T], &mut [T]) {
let ptr = slice.as_mut_ptr();
let len = slice.len();

unsafe {

(
from_raw_parts_mut(ptr, point),
from_raw_parts_mut(ptr.add(point - 1), len - point + 1),

$ cargo +nightly miri run

fn split_mut<T>(slice: &mut [T], point: usize) —> (&mut [T], &mut [T]) {
let ptr = slice.as_mut ptr()

let len

unsafe {

(

slice.len():

from_raw_parts_mut(ptr, point),
from_raw_parts_mut(ptr.add(point - 1), len - point + 1),

$ cargo +nightly m:

error: Undefined Behavior: trying to retag from <4464> for Unique permission at

alloc1963[0x4], but that tag does not exist in the borrow stack for this location
——> src/main.rs:17:9

17 / (
18 std::slice::from_raw_parts_mut(ptr, point),
19) std::slice::from_raw_parts_mut(ptr.add(point - 1), len - point + 1),
20
| | .
trying to retag from <4464> for Unique permission at alloc1963[0x4], but that..

Miri

* Miri helps identifying undefined behaviour

* Not everything can be caught by Miri, but it’s

a great start!

* When writing unsafe, use Miri for additional

checks.

Unsafeis a Safety Feature

fn split<T>(slice: &I[T], point: usize) —> (&I[T], &I[T]) {
(&slicel..point], &slicelpoint..])

VS.

fn split_mut<T>(slice: &mut [T], point: usize) —-> (&mut [T], &mut [T]) {
let ptr = &raw mut slicel0];

unsafe {

(
std::slice::from_raw_parts_mut(ptr, point),
std::slice::from_raw_parts _mut(ptr.add(point), slice.len() - point),

Unsafe is about
highlighting and preventing
undefined behaviour

Hero with a cape
On top a friendly dragon

Rescues a princess

On his long journey
He battles fierce animals

And rides a dolphin

4 Y, "\ ..r. ') | Yeriig

{ ¥ 31N \ AN TR Y ' 1) o

. ' \ LAY D Y AT

|] Y T A MU "L S iy
! iyl 4 ...f._ \ : ..-.._. J .-.,\ —.s ‘r\

) i . 9 ..4. : | \ﬁ o i 5 A .Lv“w..f,..—....a..%._

3 3 2 A h.

A

i W
A ’ Pred AN e N LV AN VT . I3 T s OV} i -
v i .. by .,,«.. v\ J) _,./4 ...—_.Juv.w.. r./.a ..ﬂ;_..'...__ 4),.%' .v,L.l.,uu.
l “ g : o »)
vl AN AENy 1S e d A O T
A DG N R 1\ N Iy J*...... Al .
LSRR B A0 o TINAL U FAANA) f
| 1] 11 b 1) . :
Moy A g \ .\ ...w LY 0 .\.. .)

’ 5 AN 1 1 Y <

S S SF N TO 2 0 _,_— LR

P ALY 1% ' L',
L " 5 N N

3
|
)

fin.

