
Profile-Guided Optimization
(PGO) in Rust: practical guide

Alexander Zaitsev

Benchmarks
Application Improvement

Rustc up to +15% compilation speed

Vector +15% EPS

Rust Analyzer +20% speedup

PostgreSQL up to +15% faster queries

SQLite up to 20% faster queries

ClickHouse up to +13% QPS

MySQL up to +35% QPS

MongoDB up to 2x faster queries

Redis up to +70% RPS

Library Improvement

serde_json ~15% improvement

xml-rs ~35% improvement

quick-xml ~25% improvement

tonic ~10% improvement

rustls ~6% improvement

axum ~10% improvement

tantivy ~30% improvement

wgpu ~25% improvement

tracing libs ~35-40% improvement

2

Few words about me
• Used to be a C++ engineer (now my C++ skills
are Rust-y ;), later worked as an architect

• Was working with ISO WG21 (C++ committee):
Numerics TS + constexpr containers stuff

• Spent several years on “hacking” LLVM
compiler/static analyzers/C++ standard library
(libc++), etc.

• Spent the last 2 years with PGO on a daily
basis

• Now work as a Co-Founder/CTO @ Cytopus

3

Our plan for the talk

● A theoretical part about PGO
● PGO state in the Rust ecosystem
● Practical PGO problems (and sometimes solutions for them!)
● Few words about the things beyond PGO

4

A bit of theory

6

Ahead-of-Time (AOT)

VCS Compiler Target machine
Source
code

Binary

CI/CD

Just-in-Time (JIT)

VCS Compiler
Target machine

+
CompilerSource

code
Bytecode

CI/CD

Compiler optimizations and runtime information

● Inlining
● Loop roll/unroll
● Devirtualization
● Hot/cold code splitting
● Link-Time Optimization (LTO)
● And many other funny things!

Many compiler optimizations can be improved by providing runtime
execution statistics!

7

8

9

The solution: Profile-Guided Optimization

● Collect runtime statistics on a target machine aka a PGO profile
● Pass the profile to a compiler
● Use the profile during the compilation phase

10

So many names… for the same thing

● Profile-Guided Optimization (PGO)
● Feedback-Driven Optimization (FDO)
● Profile-Directed Optimization (PDF)
● Profile-Based Optimization (PBO)
● Profile Online Guided Optimization (POGO)

11

PGO: optimization example 12

fn some_top_secret_checker(var: i32)

-> bool {

 if var == 42 { return true }

 if var == 322 { return true }

 if var == 1337 { return true }

 return false

}

mov al, 1
cmp edi, 42
je .LBB0_4
cmp edi, 1337
je .LBB0_4
cmp edi, 322
je .LBB0_4
xor eax, eax

.LBB0_4:
ret

PGO: optimization example 13

fn some_top_secret_checker(var: i32)

-> bool {

 if var == 42 { return true }

 if var == 322 { return true }

 if var == 1337 { return true }

 return false

}

mov al, 1
cmp edi, 42
je .LBB0_4
cmp edi, 1337
je .LBB0_4
cmp edi, 322
je .LBB0_4
xor eax, eax

.LBB0_4:
ret

mov al, 1
cmp edi, 322
jne .LBB0_1

.LBB0_4:
ret

.LBB0_1:
cmp edi, 1337
je .LBB0_4
cmp edi, 42
je .LBB0_4
xor eax, eax
jmp .LBB0_4

PGO kinds

● Instrumentation PGO
● Sampling PGO
● Different flavours and combinations (CSIR PGO, CSS PGO,

Temporal, etc.)

14

How does Instrumentation PGO work?

1. Compile your application in the Instrumentation mode
2. Run the instrumented application on your typical workload
3. Collect PGO profiles
4. Recompile your application once again with the PGO profiles
5. …
6. Profit!

15

PGO Instrumentation: assembly 16

fn is_meaning_of_life(var: i32) {

 var == 42

}
cmp edi, 42
sete al
ret

PGO Instrumentation: assembly 17

fn is_meaning_of_life(var: i32) {

 var == 42

}
cmp edi, 42
sete al
ret

 inc qword ptr [...]
 cmp edi, 42
 sete al
 ret

PGO Instrumentation: assembly 18

fn is_meaning_of_life(var: i32) {

 var == 42

}
cmp edi, 42
sete al
ret

 inc qword ptr [...]
 cmp edi, 42
 sete al
 ret

__llvm_profile_raw_version:
 .quad 72057594037927944
__llvm_profile_filename:
 .asciz "default_%m.profraw"

Instrumentation PGO: caveats

● You need to compile your application at least twice: for
instrumentation and then for the actual optimization

● An instrumented binary is larger
● An instrumented binary is slower

19

PGO instrumentation: binary size increase

Application Release size Instrumented size Ratio

ClickHouse 2.0 Gib 2.8 Gib 1.4x

MongoDB 151 Mib 255 Mib 1.69x

SQLite 1.8 Mib 2.7 Mib 1.5x

Nginx 3.8 Mib 4.3 Mib 1.13x

curl 1.1 Mib 1.4 Mib 1.27x

Vector 198 Mib 286 Mib 1.44x

HAProxy 13 Mib 17 Mib 1.3x

20

PGO Instrumentation: binary slowdown

Application Instrumented to Release slowdown ratio

ClickHouse 311x

Tarantool 1.5x

HAProxy 1.20x

Fluent-Bit 1.48x

Vector 14x

clang-tidy 2.28x

lld 6.8x

21

How does Sampling PGO work?

1. Run your usual application
2. Collect runtime information via an (external) profiler (like Linux

perf or Intel VTune or any other profiler)
3. Recompile your application once again with runtime information
4. …
5. Profit!

22

Sampling PGO: caveats

● BSS hardware support can lead (and leads) to better results but
can be unavailable in your hardware/OS:
○ Intel x86-64 - LBR: since Nehalem (2008), Linux - sometime

between 2010-2011
○ AMD x86-64 - BRS: since Zen 3 (2020), Linux 5.19 (2022)
○ <vendor_name> ARM64 - BRBE: since ARMv9.2-A (2023),

Linux 6.7-rc1 (2024) OR Coresight features (Android)
○ RISC-V - CTR. Status: proposal (WIP)
○ Does not work with virtualization

23

Sampling PGO: caveats

● BSS hardware support can lead (and leads) to better results but
can be unavailable in your hardware/OS

24

● Limited tooling support
○ Google AutoFDO - buggy as hell
○ llvm-profgen - works only with BSS profiles

Instrumentation vs Sampling

● Instrumentation allows to achieve better optimization
○ According to Google: Sampling PGO has ~80-90%

efficiency of Instrumentation PGO
● Sampling has far less runtime overhead

○ ~2% with Sampling compared to +inf with Instrumentation
○ You can even tweak the amount of overhead via a sampling

rate
● Instrumentation has better OS and tooling support

25

PGO state in Rust

PGO support in Rust compilers

● Rustc - supports both instrumentation and sampling PGO
○ Same for Ferrocene compiler

● gcc-rs - No support
● mrustc - No support
● Other Rust compilers (if any) - I don’t know :)

27

PGO support in other wrong languages

● C, C++ - the maturest existing implementations in the world
● D, other GCC or LLVM-based compilers - almost the same as

C++ but without some of the most advanced PGO features
● Go (the official compiler) - supports but can do little (for now)
● C# - supports, called “Dynamic PGO”
● GraalVM targets (Java, Kotlin and other) - supports, not enough

publicly available information, bad docs :(
● Other languages/compilers - with 0.999(9) probability PGO is

not supported

28

Instrumentation PGO in Rustc: an example

1. Compile the program with Instrumentation:
rustc -Cprofile-generate=/tmp/pgo-data main.rs

2. Run the instrumented program with a training workload
3. Convert the .profraw file into a .profdata file using LLVM's

llvm-profdata tool:
 llvm-profdata merge -output=merged.profdata default.profraw
4. Compile the program again with the profiling data:

rustc -Cprofile-use=merged.profdata main.rs

29

cargo-pgo - the best PGO friend

● Written by Jakub “Kobzol” Beranek
● GitHub: https://github.com/Kobzol/cargo-pgo
● Supports Instrumentation PGO and LLVM BOLT

With this tool your PGO workflow could be something like this:
1. cargo pgo build
2. Run on a training workload
3. cargo pgo optimize build
4. …
5. Profit!

30

https://github.com/Kobzol
https://github.com/Kobzol/cargo-pgo

PGO issues in Rustc

● Documentation
● Tooling

○ cargo-pgo is not ideal
○ AutoFDO migration process

● Missing most advanced PGO modes
● Bugs

○ The most annoying one is about LTO + PGO (link)
● #[no_std] is not supported by default*

○ But can be achieved with minicov
● WASM is not supported (yet)

31

https://github.com/rust-lang/rust/issues/115344
https://github.com/Amanieu/minicov

Current PGO states across Rust applications

● Almost no applications support building with PGO in their build
scripts

● OS distributions also don’t build its software with PGO
○ However, some OS enables PGO for more packages like

Gentoo, ClearLinux, CachyOS

Rule of thumb: if you want PGO for something - you need to
rebuild it

32

33

PGO integration state for Rust apps

● Rustc - PGO is enabled (thanks, @Kobzol)!
○ Ferrocene - no PGO

● Rust Analyzer - no PGO
● Vector - no PGO (at least there is a page about PGO!)
● Quickwit - no PGO
● RedoxOS - no PGO
● Iggy-rs - no PGO
● Other Rust projects - I am pretty sure the same :(

You know what to do ;)

34

PGO integration: the Ferrocene example 35

Your PGO traps way in Rust

Q: How should I collect PGO profiles?

Short answer: it depends
Long answer: it depends (but longer)
● From unit-tests - please don’t!
● From (micro)benchmarks - it depends
● From manually-crafted training scenario - good option
● From production - great option (but please be careful)

There is no silver bullet here - it depends on your case

37

Q: How long should I collect PGO profiles?

Short answer: it depends
Long answer: it depends (but longer)
The question is not about how long you collect your PGO profile
but how representative your PGO profile is.
Possible options:
● Collect from the whole workload - max representation but can

be too expensive/time-consuming
● Collect from a part of the workload - can work as well but

measurements are required anyway
● Any other options in between

38

Q: PGO optimizes some cases and pessimizes others

Short answer: you are unlucky
Long answer:
● Try to build per-workload application
● If it’s not possible, try to merge multiple profiles into one via

tools like llvm-profdata

39

Q: PGO-optimized build is not reproducible!

Short answer: it’s a complicated topic
Long answer: oh…

There are two major cases:
● PGO-optimized build reproducibility - save somewhere a PGO

profile and use it for all builds
● PGO profile reproducibility - impossible too difficult to achieve in

practice for various reasons. More details - LLVM forum (click)

40

https://discourse.llvm.org/t/pgo-profile-reproducibility/82861

41

Q: What to do with outdated PGO profiles?

Short: just regenerate them ;)
Long answer: regenerate them with some frequency:
● Each build - good for easy-to-gather PGO profiles
● Each release - good for most serious cases
● Continuous update - one of the best way but hard to achieve*

42

Continuous Profile-Guided Optimization

● AFAIK, the only thing right now is Google Wide Profiler (GWP) based
solution, closed-source

● There is no ready-to-use open-source solution yet
● There is an idea about making such a platform as a part of Grafana

Pyroscope or Elasticsearch Universal Profiling
○ Or even as a part of GCP Cloud Profiler

● Can be implemented on proprietary profiling platforms like
Yandex.Perforator, Ozon.Vision, etc.

43

Q: Can I apply PGO to multilingua apps?

Short answer: yes
Long answer: yes but be careful:
● Very weak tooling support
● Incompatible PGO profile formats between different parts due to

different compilers/compiler versions

Possible use cases: C/C++ + Rust apps, Rust + wrapper libraries
(like Python via pyo3)

44

Q: What about PGO and constant-time computations?

Short answer: no worries - you are safe*
Long answer: the same guarantees as without PGO - it depends on
your implementation:
● If you have a robust compiler optimization independent

mechanism - you are fine
● If not - well… be careful

45

Q: Can I implement PGO manually in my code?

Short answer: yes, you can
Long answer: please do it only if you really need it
Manual implementation has the following disadvantages:
● Require more human resources
● Harder to maintain
● Isn’t flexible across workloads
● Could be difficult to implement all PGO optimizations

Please spend your time on something more useful like
algorithmic optimizations

46

“Better algo always beats optimizer” - it depends ;) 47

Q: Why PGO doesn’t optimize my application?

Short answer: your software is written by optimization Gods
Long answer: you are lucky enough
● Unfortunately, not all software is so heavily optimized like

FFmpeg/Symphonia
● Even if for now optimizations are good, later less optimized

code can be introduced - and PGO would be a viable option
● If you are really sure that compiler should be able to optimize

your program with PGO but it doesn’t happen - you can report
to the upstream (GL&HF with that)

48

Optimization roadmap for a blazing fast app

● Enable opt-level = 3
● Enable LTO (Fat or Thin)

○ Probably codegen-units = 1
● Enable PGO

○ Instrumentation by default
○ Sampling otherwise

● Enable Post-Link Optimization (PLO)
● Enable more advanced things O_o

49

Post-Link Optimization (PLO)

● An optimization technique that optimizes a binary layout to minimize CPU
instruction cache misses

● The default tool nowadays: LLVM BOLT (developed by Facebook)
● Less known tools: Google Propeller and Intel TLO
● Workflow is almost the same as PGO: instrument, train, optimize

○ Sampling is supported too (at least by BOLT)
● Their own issues: limited architecture support, BUGS, big instrumentation

overhead, etc.

50

Post-Link Optimization (PLO)

● PGO does not implement some optimizations from PLO, and vice versa
● PLO is not a PGO substitution - it’s an addition!
● So your final optimization pipeline can look something like this:

Release + LTO + PGO + PLO

51

Benchmarks: PGO vs PLO vs PGO + PLO

The benchmark - SQLite with the “speedtest” bench suite:

● Release (baseline): 17.022s
● PGO: 15.195s
● PLO: 15.887s
● PGO + PLO: 14.996s

52

More advanced things?

I have a bunch of them too ;)

● Application-Specific Operating Systems (ASOS)
● Or even Application-Specific Interpreters (I did this too, huh)
● Machine-Learning based compilers
● Maaaaaaaany other more academic things like OCOLOS and HALO

54

Good optimization candidates

● Compilers, interpreters and similar things like static analyzers, LSP
servers, code formatters, etc.

● Databases
● Different parsers (like log solutions, XML/JSON/Protobuf, etc.)
● Operating systems, drivers
● Any mentioned at this conference software
● Actually, any application with many code branches
● <placeholder_for_your_application>

55

Links

There are so many links - cannot list them all here. But the main meta-link is…

Awesome PGO

56

https://github.com/zamazan4ik/awesome-pgo

The ideas behind Awesome PGO project

1. Introduce more data-driven optimization approaches for everyone - PGO is
just a small step in this direction
a. 500+ PGO issues on GitHub and ~250 PGO benchmarks for different projects is a small price

for that :)
2. Increase the default performance level of the whole industry for various

reasons: I like quick software, lower carbon emissions, better UX, cheaper
infrastructure/smaller Total Cost of Ownership (TCO), easier to achieve
non-functional requirements (NFRs), achieve your quarter performance goals
(lol), etc. -> improve the world

57

That’s it for today! Thank you!

The PGO Gate
https://github.com/zamazan4ik/awesome-pgo

58

● Emails:
○ zamazan4ik@tut.by (primary)
○ zamazan4ik@gmail.com (secondary)

● Telegram: zamazan4ik
● Discord: zamazan4ik
● Reddit: zamazan4ik
● GitHub: zamazan4ik

https://github.com/zamazan4ik/awesome-pgo

