Profile-Guided Optimization
(PGO) in Rust: practical guide

Alexander Zaitsev

Benchmarks

Application Improvement Library Improvement

Rustc up to +15% compilation speed serde_json ~15% improvement
Vector +15% EPS xml-rs ~35% improvement
Rust Analyzer +20% speedup quick-xml ~25% improvement
PostgreSQL up to +15% faster queries tonic ~10% improvement
SQLite up to 20% faster queries rustls ~6% improvement
ClickHouse up to +13% QPS axum ~10% improvement
MySQL up to +35% QPS tantivy ~30% improvement
\Y[eglefe]B]=} up to 2x faster queries wgpu ~25% improvement
Redis up to +70% RPS tracing libs ~35-40% improvement

Few words about me

* Used to be a C++ engineer (now my C++ skills
are Rust-y ;), later worked as an architect

* Was working with ISO WG21 (C++ committee):
Numerics TS + constexpr containers stuff

* Spent several years on “hacking” LLVM
compiler/static analyzers/C++ standard library
(libc++), etc.

* Spent the last 2 years with PGO on a daily
basis

* Now work as a Co-Founder/CTO @ Cytopus

Our plan for the talk

A theoretical part about PGO
PGO state in the Rust ecosystem

Practical PGO problems (and sometimes solutions for them!)
Few words about the things beyond PGO

A bit of theory

Ahead-of-Time (AOT)

Binary

-1 Target machine

Cl/ICD
VCS Compiler
Source
code
Just-in-Time (JIT)
Cl/CD
VCS Compiler
Source

code

Bytecode

Target machine
+

Compiler

Compiler optimizations and runtime information

Inlining

Loop roll/unroll
Devirtualization

Hot/cold code splitting
Link-Time Optimization (LTO)
And many other funny things!

Many compiler optimizations can be improved by providing runtime
execution statistics!

adce: Aggressive Dead Code Elimination
always-inline: Inliner for always_inline functions

argpromotion: Promote ‘by reference’ arguments to scalars
block-placement: Profile Guided Basic Block Placement
break-crit-edges: Break critical edges in CFG
codegenprepare: Optimize for code generation
constmerge: Merge Duplicate Global Constants

dce: Dead Code Elimination

deadargelim: Dead Argument Elimination

dse: Dead Store Elimination

function-attrs: Deduce function attributes

globaldce: Dead Global Elimination

globalopt: Global Variable Optimizer

gvn: Global Value Numbering

indvars: Canonicalize Induction Variables

inline: Function Integration/Inlining

instcombine: Combine redundant instructions
aggressive-instcombine: Combine expression patterns
internalize: Internalize Global Symbols

ipsccp: Interprocedural Sparse Conditional Constant Propagation

jump-threading: Jump Threading

Llcssa: Loop-Closed SSA Form Pass

Llicm: Loop Invariant Code Motion
Lloop-deletion: Delete dead loops
Lloop-extract: Extract loops into new functions
Lloop-reduce: Loop Strength Reduction
Lloop-rotate: Rotate Loops

Lloop-simplify: Canonicalize natural loops
Loop-unroll: Unroll loops

lower—global-dtors: Lower global destructors

lower—atomic: Lower atomic intrinsics to non-atomic form
lower-invoke: Lower invokes to calls, for unwindless code generators
lower-switch: Lower SwitchInsts to branches

mem2reg: Promote Memory to Register

memcpyopt: MemCpy Optimization

mergefunc: Merge Functions

mergereturn: Unify function exit nodes

partial-inliner: Partial Inliner

reassociate: Reassociate expressions
rel-lookup-table-converter: Relative lookup table converter
reg2mem: Demote all values to stack slots

sroa: Scalar Replacement of Aggregates

sccp: Sparse Conditional Constant Propagation

simplifycfg: Simplify the CFG

sink: Code sinking

simple-loop-unswitch: Unswitch loops

strip: Strip all symbols from a module
strip-dead-debug-info: Strip debug_info for unused symbols
strip-dead-prototypes: Strip Unused Function Prototypes
strip-nondebug: Strip all symbols, except dbg_symbols, from a module
tailcallelim: Tail Call Elimination

llvm-project / llvm / lib / Analysis / InlineCost.cpp

Code] Blame @ 3276 lines (2797 loc) -+ 124 KB

L=

74 static cl::opt<int> InlineThreshold(

75 "inline-threshold", cl::Hidden, cl::init(225),

76 cl::desc("Control the amount of inlining to perform (default = 225)"));
774

78 static cl::opt<int> HintThreshold(

79 "inlinehint-threshold", cl::Hidden, cl::init(325),

80 cl::desc("Threshold for inlining functions with inline hint"));

81

82 static cl::opt<int>

83 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,

84 cl::init(45),

85 cl::desc("Threshold for inlining cold callsites"));

86

The solution: Profile-Guided Optimization

e C(ollect runtime statistics on a target machine aka a PGO profile
e Pass the profile to a compiler
e Use the profile during the compilation phase

10

SO0 many names... for the same thing

Profile-Guided Optimization (PGO)
Feedback-Driven Optimization (FDO)
Profile-Directed Optimization (PDF)
Profile-Based Optimization (PBO)

Profile Online Guided Optimization (POGQO)

11

PGO: optimization example

fn some_top_secret_checker(var: i32) mov al, 1
— bool { cmp edi, 42
if var = 42 { return true } Je .LBBO_4

cmp edi, 1337

if var = 322 { return true }]
. je .LBBO_&4
if var = 1337 { return true } cmp edi, 322
je .LBBO_4
return false Xor eax, eax
} .LBBO_4:

PGO: optimization example

fn some_top_secret_checker(var: i32) mov al, 1 mov al, 1
— bool { cmp edi, 42 cmp edi, 322
if var = 42 { return true } je .LBBO_4 jne .LBBO_1
. cmp edi, 1337 .
if var'="322 { return true } _ P ’ -LBBO_4:
, je .LBBO_& ot
if var = 1337 { return true } cmo edi. 322
=P ’ .LBBO 1:
je .LBBO_4 .
cmp ed 1337
return false Xor eax, eax . P tr
) LBBO 4: je .LBBO 4
ret cmp edi, 42
je .LBBO_4

Xor eax, eax
jmp .LBBO_4

PGO kinds

e Instrumentation PGO

e Sampling PGO
e Different flavours and combinations (CSIR PGO, CSS PGO,

Temporal, etc.)

14

How does Instrumentation PGO work?

Compile your application in the Instrumentation mode
Run the instrumented application on your typical workload
Collect PGO profiles

Recompile your application once again with the PGO profiles

v 9 o= N =

Profit!

15

PGO Instrumentation: assembly

fn is_meaning_of_life(var: 132) {

}

var = 42

cmp edi, 42
sete al
ret

16

PGO Instrumentation: assembly

fn is_meaning_of_life(var: 132) {

var

42

cmp edi, 42
sete al
ret

inc
cmp
sete
ret

qword ptr [...]
edi, 42
al

17

PGO Instrumentation: assembly

fn is_meaning_of_life(var: 132) {

var

42

cmp
sete
ret

edi, 42
al

18

inc qword ptr [...]
cmp edi, 42

sete al

ret

__1llvm_profile_raw_version:
.quad 72057594037927944
__1llvm_profile_filename:
.asciz "default_%m.profraw"

Instrumentation PGO: caveats

e You need to compile your application at least twice: for
instrumentation and then for the actual optimization

e An instrumented binary is larger

e An instrumented binary is slower

19

PGO instrumentation: binary size increase

20

Application Release size Instrumented size Ratio
ClickHouse 2.0 Gib 2.8 Gib 1.4x
MongoDB 151 Mib 255 Mib 1.69x
SQLite 1.8 Mib 2.7 Mib 1.5x
Nginx 3.8 Mib 4.3 Mib 1.13x
curl 1.1 Mib 1.4 Mib 1.27x
Vector 198 Mib 286 Mib 1.44x
HAProxy 13 Mib 17 Mib 1.3x

PGO Instrumentation: binary slowdown

Application Instrumented to Release slowdown ratio
ClickHouse 311x

Tarantool 1.5x

HAProxy 1.20x

Fluent-Bit 1.48x

Vector 14x

clang-tidy 2.28x

lid 6.8x

21

How does Sampling PGO work?

1. Run your usual application

2. Collect runtime information via an (external) profiler (like Linux
perf or Intel VTune or any other profiler)

3. Recompile your application once again with runtime information

5. Profit!

22

Sampling PGO: caveats 23

e BSS hardware support can lead (and leads) to better results but
can be unavailable in your hardware/OS:

O

Intel x86-64 - LBR: since Nehalem (2008), Linux - sometime
between 2010-2011

AMD x86-64 - BRS: since Zen 3 (2020), Linux 5.19 (2022)
<vendor_name> ARMG64 - BRBE: since ARMv9.2-A (2023),
Linux 6.7-rc1 (2024) OR Coresight features (Android)
RISC-V - CTR. Status: proposal (WIP)

Does not work with virtualization

Sampling PGO: caveats

® BSS hardware support can lead (and leads) to better results but
can be unavailable in your hardware/OS

e Limited tooling support
o Google AutoFDO - buggy as hell
o llvm-profgen - works only with BSS profiles

24

Instrumentation vs Sampling

e Instrumentation allows to achieve better optimization
o According to Google: Sampling PGO has ~80-90%
efficiency of Instrumentation PGO
e Sampling has far less runtime overhead
o ~2% with Sampling compared to +inf with Instrumentation
o You can even tweak the amount of overhead via a sampling
rate
e |[nstrumentation has better OS and tooling support

25

PGO state in Rust

PGO support in Rust compilers

e Rustc - supports both instrumentation and sampling PGO
o Same for Ferrocene compiler

e gcc-rs - No support

e mrustc - No support

e Other Rust compilers (if any) - | don’t know :)

27

PGO support in other wrenrg languages

e (C, C++ - the maturest existing implementations in the world

e D, other GCC or LLVM-based compilers - almost the same as
C++ but without some of the most advanced PGO features

e (o (the official compiler) - supports but can do little (for now)

e C# - supports, called “Dynamic PGQO”

e GraalVM targets (Java, Kotlin and other) - supports, not enough
publicly available information, bad docs :(

e Other languages/compilers - with 0.999(9) probability PGO is
not supported

28

Instrumentation PGO in Rustc: an example

1.

SEN

Compile the program with Instrumentation:
rustc -Cprofile-generate=/tmp/pgo-data main.rs

Run the instrumented program with a training workload
Convert the .profraw file into a .profdata file using LLVM's
llvm-profdata tool:

llvm-profdata merge -output=merged.profdata default.profraw
Compile the program again with the profiling data:
rustc -Cprofile-use=merged.profdata main.rs

cargo-pgo - the best PGO friend

e \Written by Jakub “Kobzol” Beranek
e GitHub: https://github.com/Kobzol/cargo-pgo
e Supports Instrumentation PGO and LLVM BOLT

With this tool your PGO workflow could be something like this:

cargo pgo build
Run on a training workload
cargo pgo optimize build

abhowbN =

Profit!

30

https://github.com/Kobzol
https://github.com/Kobzol/cargo-pgo

PGO issues in Rustc

Documentation

Tooling

o cargo-pgo is not ideal

o AutoFDO migration process

Missing most advanced PGO modes

Bugs

o The most annoying one is about LTO + PGO (link)
#[no_std] is not supported by default*

o But can be achieved with minicov

WASM is not supported (yet)

31

https://github.com/rust-lang/rust/issues/115344
https://github.com/Amanieu/minicov

Current PGO states across Rust applications

e Almost no applications support building with PGO in their build
scripts
e OS distributions also don't build its software with PGO
o However, some OS enables PGO for more packages like
Gentoo, ClearLinux, CachyOS

Rule of thumb: if you want PGO for something - you need to
rebuild it

Ky

33

H C:- 0211.2024, 12:21

7 Okay, got AutoFDO working in pkgbuild yippi

Doing now a super optimized AutoFDO + Propellor + ThinLTO Kernel .
s 1 | ‘ @

and when bolt someday works we can do a

AutoFDO + Propellor + ThinLTO + BOLT Kernel xD

and then everything explodes

PGO integration state for Rust apps

Rustc - PGO is enabled (thanks, @Kobzol)!

o Ferrocene - no PGO

Rust Analyzer - no PGO

Vector - no PGO (at least there is a page about PGO!)
Quickwit - no PGO

RedoxOS - no PGO

lggy-rs - no PGO

Other Rust projects - | am pretty sure the same :(

You know what to do ;)

KZ

Hi Alexander,

There are various blockers that make PGO uninteresting at this point of time:

e From the feedback that we have, it is not the case that compilation times are a pressing issue for our customer base.
This may change in the future.

e The targets that PGO supports in the upstream project are not the targets that we currently support: Our primary
targets are aarch64 bare metal and QNX, while upstream PGO primarily targets Linux x64 and Windows.

* It adds significant complexity to the build process and the build process is part of the certification

* |t makes reproducible builds extremely hard, making it harder for certification

e It significantly increases build times — and they’re already a major issue both upstream and for us — we do essentially
replicate all builds for our supported targets.

e There’s an unknown risk of miscompilation — a major issue for any certification effort.

» Getting a reliable training set for the optimization is somewhat hard — it’s not necessarily a valid assumption that the
default set used by the upstream project matches what our customers intend to use.

Given all these open issues, the only option would be to support PGO for quality managed build only, and we currently see
very limited interest in that. We don’t even see interest in a faster build without assertions enabled, which would be a
significantly easier step with a much lower risk.

Your PGO #aps way in Rust

Q: How should I collect PGO profiles?

Short answer: it depends
Long answer: it depends (but longer)

From unit-tests - please don't!

From (micro)benchmarks - it depends

From manually-crafted training scenario - good option
From production - great option (but please be careful)

There is no silver bullet here - it depends on your case

37

Q: How long should | collect PGO profiles?

Short answer: it depends
Long answer: it depends (but longer)

The question is not about how long you collect your PGO profile
but how representative your PGO profile is.

Possible options:

e Collect from the whole workload - max representation but can
be too expensive/time-consuming

e Collect from a part of the workload - can work as well but
measurements are required anyway

e Any other options in between

38

Q: PGO optimizes some cases and pessimizes others 39

Short answer: you are unlucky
Long answer:

e Try to build per-workload application
e |[fit's not possible, try to merge multiple profiles into one via
tools like llvm-profdata

Q: PGO-optimized build is not reproducible!

Short answer: it's a complicated topic
Long answer: oh...

There are two major cases:

e PGO-optimized build reproducibility - save somewhere a PGO
profile and use it for all builds

e PGO profile reproducibility - #mpesstbte too difficult to achieve in
practice for various reasons. More details - LLVM forum (click)

https://discourse.llvm.org/t/pgo-profile-reproducibility/82861

davidxl 10d

The value profile data depends up update order in the current implementation, so enabling
atomic update does not guarantee full reproducibility. Disabling value profiling + atomic update
may get it but this is not fully validated.

2 Replies v O @ < & Reply

Xinliang David Li

David is a Principal Engineer at Google. He manages the Compiler Optimization Team and leads the effort to generate the fastest possible code
for Google's data center softwares. His research interests include highly scalable cross module optimizations, scalable profile guided
optimizations (instrumentation, PMU sample, trace-based), memory hierarchy optimizations (data and instructions), micro-architecture
optimizations, post link optimizations, and ML based optimization frameworks.

Q: What to do with outdated PGO profiles?

Short: just regenerate them ;)
Long answer: regenerate them with some frequency:

e Each build - good for easy-to-gather PGO profiles
e Each release - good for most serious cases
e Continuous update - one of the best way but hard to achieve*

42

Continuous Profile-Guided Optimization

e AFAIK, the only thing right now is Google Wide Profiler (GWP) based
solution, closed-source

e There is no ready-to-use open-source solution yet

e There is an idea about making such a platform as a part of Grafana

Pyroscope or Elasticsearch Universal Profiling
o Oreven as a part of GCP Cloud Profiler

e Can be implemented on proprietary profiling platforms like
Yandex.Perforator, Ozon.Vision, etc.

43

Q: Can | apply PGO to multilingua apps?

Short answer: yes
Long answer: yes but be careful:

e Very weak tooling support
e |ncompatible PGO profile formats between different parts due to
different compilers/compiler versions

Possible use cases: C/C++ + Rust apps, Rust + wrapper libraries
(like Python via pyo3)

44

Q: What about PGO and constant-time computations?

Short answer: no worries - you are safe”

Long answer: the same guarantees as without PGO - it depends on
your implementation:

e |f you have a robust compiler optimization independent
mechanism - you are fine
e If not - well... be careful

45

Q: Can | implement PGO manually in my code?

Short answer: yes, you can
Long answer: please do it only if you really need it
Manual implementation has the following disadvantages:

e Require more human resources
e Harder to maintain
e |[sn’t flexible across workloads
e Could be difficult to implement all PGO optimizations
Please spend your time on something more useful like
algorithmic optimizations

46

“Better algo always beats optimizer” - it depends ;) «
‘? rgerhards commented on Jun 28, 2023 Member

| would tend to say that this advise is best for distro package maintainers. While we build
packages, the far majority of folks use the distro provided ones. | admit | am conservative on
build tools. For example, we tried jmalloc in the past. Good performance, but we found a
couple of definite jmalloc bugs, probably fixed now, but we decided to keep the old allocator
in favor of robustness.

Everyone is free to rebuild. Build toolchain is far from our core competency, the team is small
and as you can see there is a lot of work. While | appreciate the idea, | have to say that there
are far more important things in front of it in the pipeline (think: better algo always beats
optimizer).

®)

Q: Why PGO doesn’t optimize my application? i

Short answer: your software is written by optimization Gods

Long answer: you are lucky enough

e Unfortunately, not all software is so heavily optimized like
FFmpeg/Symphonia

e Even if for now optimizations are good, later less optimized
code can be introduced - and PGO would be a viable option

e If you are really sure that compiler should be able to optimize
your program with PGO but it doesn’t happen - you can report
to the upstream (GL&HF with that)

Optimization roadmap for a blazing fast app a9

e Enable opt-level =3
e Enable LTO (Fat or Thin)
o Probably codegen-units = 1
e Enable PGO
o Instrumentation by default
o Sampling otherwise
e Enable Post-Link Optimization (PLO)
e Enable more advanced things O_o

50

Post-Link Optimization (PLO)

e An optimization technique that optimizes a binary layout to minimize CPU
instruction cache misses

e The default tool nowadays: LLVM BOLT (developed by Facebook)

e Less known tools: Google Propeller and Intel TLO

e Workflow is almost the same as PGO: instrument, train, optimize
o Sampling is supported too (at least by BOLT)

e Their own issues: limited architecture support, BUGS, big instrumentation
overhead, etc.

Post-Link Optimization (PLO)

PGO does not implement some optimizations from PLO, and vice versa
PLO is not a PGO substitution - it's an addition!
So your final optimization pipeline can look something like this:

v

Release + LTO + PGO + PLO

& 0211.2024, 12:21
Okay, got AutoFDO working in pkgbuild yippi

Doing now a super optimized AutoFDO + Propellor + ThinLTO Kernel
w1 (1) S

and when bolt someday works we can do a

AutoFDO + Propellor + ThinLTO + BOLT Kernel xD

and then everything explodes

51

Benchmarks: PGO vs PLO vs PGO + PLO

The benchmark - SQLite with the “speedtest” bench suite:

Release (baseline): 17.022s
PGO: 15.195s

PLO: 15.887s

PGO + PLO: 14.996s

52

More advanced things?

| have a bunch of them too ;)

Application-Specific Operating Systems (ASOS)

Or even Application-Specific Interpreters (I did this too, huh)
Machine-Learning based compilers

Maaaaaaaany other more academic things like OCOLOS and HALO

54

Good optimization candidates

e Compilers, interpreters and similar things like static analyzers, LSP
servers, code formatters, etc.

Databases

Different parsers (like log solutions, XML/JSON/Protobuf, etc.)
Operating systems, drivers

Any mentioned at this conference software

Actually, any application with many code branches
<placeholder_for_your_application>

55

Links

There are so many links - cannot list them all here. But the main meta-link is...

Awesome PGO

56

https://github.com/zamazan4ik/awesome-pgo

57

The ideas behind Awesome PGO project

1. Introduce more data-driven optimization approaches for everyone - PGO is

just a small step in this direction
a. 500+ PGO issues on GitHub and ~250 PGO benchmarks for different projects is a small price
for that :)
2. Increase the default performance level of the whole industry for various

reasons: | like quick software, lower carbon emissions, better UX, cheaper
infrastructure/smaller Total Cost of Ownership (TCO), easier to achieve
non-functional requirements (NFRs), achieve your quarter performance goals
(lol), etc. -> improve the world

That's it for today! Thank you!

The PGO Gate
https://github.com/zamazan4ik/awesome-pqo

e Emails:

o zamazandik@tut.by (primary)
o zamazandik@gmail.com (secondary)

Telegram: zamazan4ik
Discord: zamazan4ik
Reddit: zamazan4ik
GitHub: zamazan4ik

58

https://github.com/zamazan4ik/awesome-pgo

