
Design and Implementation of the #[diagnostic] namespace
RustLab 2024

Georg Semmler



Introduction

▶ weiznich/Georg Semmler

▶ Developer and Researcher at GiGa
infosystems

▶ Write Rust for 10 years

▶ Maintainer of Diesel

2



Motivation

▶ Rustc is known for good error messages

▶ Nevertheless can produce large hard to understand errors

▶ Rustc relies on heuristics to decide what’s relevant to show

▶ Often crate authors do know what’s relevant and what’s not

⟹ Providing a way to customize error messages would allow crate authors to significantly
improve the developer experience for their crates

3



The #[diagnostic] namespace

▶ Tool attribute namespace ⟶ modifies behaviour of a rust tool

▶ Contains a set of attributes to modify error messages emitted by the compiler

#[diagnostic::on_unimplemented(message = "MyCustomError")]
trait Foo {}

#[diagnostic::do_not_recommend]
impl<T> Foo for T where T: Send {}

4



The #[diagnostic] namespace: Rules

▶ Any attribute in there is a suggestion to the compiler

▶ Unknown attributes are ignored

▶ Malformed attributes are ignored

▶ Compiler might change the output later, no guarantees that the hint is applied

▶ Attributes are not allowed to change the compilation result

▶ New attributes can be easily added without requiring a full RFC

5



The #[diagnostic::on_unimplemented] attribute

▶ Stable since 1.78 (May 2024)

▶ Modifies error message emitted if a trait bound is not satisfied

▶ Allows to overwrite multiple parts of the error message: message, label and notes

▶ Support using format place holders for generics

6



The #[diagnostic::on_unimplemented] attribute

trait ImportantTrait<A> {}

fn use_my_trait(_: impl ImportantTrait<i32>) {}

fn main() {
use_my_trait(String::new());

}

7



The #[diagnostic::on_unimplemented] attribute

error[E0277]: the trait bound `String: ImportantTrait<i32>` is
not satisfied

--> src/main.rs:6:18
|

6 | use_my_trait(String::new());
| ------------ ^^^^^^^^^^^^^ the trait `ImportantTrait<i32>` is
| not implemented for `String`
| |
| required by a bound introduced by this call
|

help: this trait has no implementations, consider adding one
--> src/main.rs:1:1
|

1 | trait ImportantTrait<A> {}
| ^^^^^^^^^^^^^^^^^^^^^^^

8



The #[diagnostic::on_unimplemented] attribute

#[diagnostic::on_unimplemented(
message = "My Message for `ImportantTrait<{A}>` not \

implemented for `{Self}`",
label = "My Label",
note = "Note 1",
note = "Note 2"

)]
trait ImportantTrait<A> {}

fn use_my_trait(_: impl ImportantTrait<i32>) {}

fn main() {
use_my_trait(String::new());

}

9



The #[diagnostic::on_unimplemented] attribute

error[E0277]: My Message for `ImportantTrait<i32>`
not implemented for `String`

--> src/main.rs:14:18
|

14 | use_my_trait(String::new());
| ------------ ^^^^^^^^^^^^^ My Label
| |
| required by a bound introduced by this call
|
= help: the trait `ImportantTrait<i32>` is not implemented for `String`
= note: Note 1
= note: Note 2

10



The #[diagnostic::do_not_recommend] attribute

▶ Currently unstable

▶ Proposed stabilisation for 1.84 (January 2025)

▶ Hides certain trait implementations from error messages

11



The #[diagnostic::do_not_recommend] attribute

trait Expression {
type SqlType;

}
trait AsExpression<ST> {}

impl<T, ST> AsExpression<ST> for T
where T: Expression<SqlType = ST>
{ /* … */ }
impl AsExpression<Integer> for i32 { /* … */ }
impl AsExpression<Text> for String { /* … */ }

fn check(_: impl AsExpression<Integer>) {}
fn main {

check("test");
}

12



The #[diagnostic::do_not_recommend] attribute

error[E0277]: the trait bound `&str: Expression` is not satisfied
--> src/main.rs:53:15
|

LL | check("test");
| ^^^^^^ the trait `Expression` is not implemented for
| `&str`, which is required by `&str: AsExpression<Integer>`
|

note: required for `&str` to implement `AsExpression<Integer>`
--> src/main.rs:26:13
|

LL | impl<T, ST> AsExpression<ST> for T
| ^^^^^^^^^^^^^^^^ ^

LL | where
LL | T: Expression<SqlType = ST>,

| -------------------- unsatisfied trait bound introduced here
13



The #[diagnostic::do_not_recommend] attribute

error[E0277]: the trait bound `&str: AsExpression<Integer>`
is not satisfied

--> src/main.rs:53:15
|

LL | check("test");
| ^^^^^^ the trait `AsExpression<Integer>` is not
| implemented for `&str`
|

14



Combinations

Figure 1: Old error
Figure 2: New error

15



Implementation

1. Identify a problem

2. Write an RFC to propose a solution

3. Work on the implementation

4. Stabilize the feature

16



The problem: Complicated error messages

▶ Certain crates rely on the type system to model invariants

▶ Rustc emits a generic error message if that invariant is violated

▶ Crate authors can often provide specific information what is wrong there and provide pointers how to
resolve the problem

▶ Putting these hints and suggestions in the documentation makes it harder for users to discover

▶ Putting this information in the error message displays them right in front of the user

17



Writing an RFC

▶ Process to propose changes to Rust

▶ Needs to include:
▶ Motivation

▶ Design of the new feature

▶ Drawbacks

▶ Possible alternatives

▶ Unresolved questions

▶ Not every RFC is accepted by the relevant
team

▶ An accepted RFC does not automatically
give you a stable feature

18



Implementing the new language/compiler feature

1. Introduce a new nightly feature

2. Implement the new feature in the compiler

3. Write tests for the new feature

4. Start using the feature in the ecosystem and possibly in the Rust standard library

19



Implementation strategies

▶ The Rust compiler code base is just a large Rust code base

▶ You don’t need to understand everything, just that little part you are working on

▶ Rustc has a good testing setup for diagnostics ⟶ Easy to add test cases first to inspect the result

▶ Searching for error messages gives you an entry point for where to start looking

▶ println! based debug strategies work well to understand what’s going on

20



Stabilization

▶ Write a short report how the feature is
currently used

▶ Summarize the changes made during
implementation

▶ Add documentation of the new feature to
the Rust Reference

▶ Remove the unstable feature usage

▶ Wait for the relevant team to take a
decision

▶ Not every item proposed for stabilization
will be stabilized

21



Summary

▶ The #[diagnostic] namespace is home for attributes providing hints to influence compiler error
messages

▶ The #[diagnostic::on_unimplemented] attribute allows to change the error message
emitted for unimplemented traits

▶ The #[diagnostic::do_not_recommend] attribute allows to hide trait implementations from
error messages

▶ Overall helps to make compiler error messages in Rust even better

▶ Adding new attributes does not require a RFC, but just an implementation

22


