5

" GiGd

infosystems

Design and Implementation of the #[diagnostic] namespace
RustLab 2024

Introduction

\ A 4

v

weiznich/Georg Semmler

Developer and Researcher at GiGa
infosystems

Write Rust for 10 years

Maintainer of Diesel

Motivation

g
e

P> Rustc is known for good errar messages
P> Nevertheless can produce large hard to understand errors
P> Rustc relies on heuristics to decide what's relevant to show

P> Qften crate authars do know what's relevant and what’s nat

= Praviding a way to customize error messages would allow crate authars to significantly
improve the developer experience for their crates

The # [diagnostic] namespace

P> Tool attribute namespace — modifies behaviour of a rust tool

P> Contains a set of attributes to modify error messages emitted by the compiler

#[diagnostic::on_unimplemented(message = "MyCustomError")]
trait Foo {}

#[diagnostic::do_not_recommend]
impl<T> Foo for T where T: Send {}

“

The # [diagnostic] namespace: Rules

VVVYVYYVYY

Any attribute in there is a suggestion to the compiler

Unknown attributes are ignored

Malformed attributes are ignored

Compiler might change the output later, no guarantees that the hint is applied
Attributes are not allowed to change the compilation result

New attributes can be easily added without requiring a full RFC

=

The #[diagnostic: :on_unimplemented] attribute

P> Stable since 1.78 (May 2024)
P> Modifies error message emitted if a trait bound is not satisfied
P> Allows to overwrite multiple parts of the error message: message, label and notes

P> Support using format place holders for generics

The #[diagnostic: :on_unimplemented] attribute

trait ImportantTrait<A> {}
fn use_my_trait(_: impl ImportantTrait<i32>) {}
fn main() {

use_my_trait(String: :new());

}

“

The #[diagnostic: :on_unimplemented] attribute L’Q
3 \
“V
error [E0277] : the trait bound ~String: ImportantTrait<i32> is 4
not satisfied
--> src/main.rs:6:18

|
| use_my_trait(String::new());
e ————— T Troonnmen the trait “ImportantTrait<i32>" is
| not implemented for ~String’
|
I required by a bound introduced by this call
I
help: this trait has no implementations, consider adding one
--> src/main.rs:1:1

|
1 | trait ImportantTrait<A> {}

The #[diagnostic: :on_unimplemented] attribute

#[diagnostic: :on_unimplemented(
message = "My Message for ~ImportantTrait<{A}>" not \
implemented for ~{Self}™",
label = "My Label",
note "Note 1",
note "Note 2"

)]
trait ImportantTrait<A> {}

fn use_my_trait(_: impl ImportantTrait<i32>) {}

fn main() {
use_my_trait(String: :new());

“

The #[diagnostic: :on_unimplemented] attribute a

<GWw

error [E0277] : My Message for “ImportantTrait<i32>"
not implemented for “String”
--> src/main.rs:14:18
I
14 | use_my_trait(String::new());
[T e My Label
I |
| required by a bound introduced by this call
I
= help: the trait "ImportantTrait<i32>" is not implemented for “String"
note: Note 1
note: Note 2

10

The #[diagnostic: :do_not_recommend] attribute

P> Currently unstable
P> Proposed stabilisation for 1.84 [January 2025)

P> Hides certain trait implementations from error messages

1

The #[diagnostic::do_not_recommend] attribute

12

trait Expression {
type SqlType;
}

trait AsExpression<ST> {}

impl<T, ST> AsExpression<ST> for T

where T: Expression<SqlType = ST>

{ /* . 4

impl AsExpression<Integer> for i32 { /* .. */ }
impl AsExpression<Text> for String { /* .. */ }

fn check(_: impl AsExpression<Integer>) {}
fn main {

check("test");
b

g
e

The #[diagnostic::do_not_recommend] attribute }(Q\
error [E0277] : the trait bound “&str: Expression” is not satisfied <“/
-=> src/main.rs:53:15
I

LL | check("test");

¢l Tt the trait "Expression” is not implemented for

I “&str”, which is required by “&str: AsExpression<Integer>"
I

note: required for “&str” to implement “AsExpression<Integer>"
-=> src/main.rs:26:13

|
LL | impl<T, ST> AsExpression<ST> for T
| ~mmeemmeamsnnaaens -
LL | where
LL | T: Expression<SqlType = ST>,
|

———————————————————— unsatisfied trait bound introduced here

13

The #[diagnostic::do_not_recommend] attribute

14

error [E0277] : the trait bound “&str: AsExpression<Integer>"
is not satisfied
-=> src/main.rs:53:15
|
LL | check("test");
e T the trait "“AsExpression<Integer>" is not
| implemented for “&str”
|

g
e

Combinations

error[E0277]: the trait bound 'posts::columns::id: SelectableExpression<users:itable>' is not satisfied
--> tests/diesel/invalid_query.rs:20:18
|
20 | users::table.select(posts::id);
|
*post:

ARAAAA the trait 'SelectableExpression<users::table>’ is not implemented for
columns.

id"

help: the following other types implement trait 'SelectableExpression<Qs>':
:id as SelectableExpression<JoinOn<Join, On>>>

d as SelectableExpression<Only<post:

d as

::table>>>
SelectableExpression<SelectStatement<FromClause<From>>>>
d as SelectableExpression<diese

table_macro::Join<Left, Right,
Inner>>>

<posts.

:id as SelectableExpression<diesel:
LeftOuter>>>

table_macro::Join<Left, Right,

<posts d as SelectableExpression<posts

= note: required because of the requirements on the impl of 'SelectDsl<posts::columns::id>’ for
“SelectStatement<FromClause<users::table>>"

Figure 1: Old error

15

%

error[E0277]: Cannot select 'posts:

columns::id® from ‘users::table
--> tests/diesel/invalid_query.rs:20:18

table.select (posts::id);

AMAAAA the trait 'SelectableExpression<user:

table>' is not implemented for

note

id" is no valid selection for ‘users::table’

*SelectStatement<FromClause<users

table>>"

Figure 2: New error

Implementation

Identify a problem
Write an RFC to propaose a solution

Waork on the implementation

£ w0 npoH

Stabilize the feature

16

The problem: Complicated error messages g%

17

Vv VVY

Certain crates rely on the type system ta model invariants
Rustc emits a generic error message if that invariant is violated

Crate authors can often provide specific information what is wrong there and provide pointers how to
resolve the problem

Putting these hints and suggestions in the documentation makes it harder for users ta discover

Putting this information in the error message displays them right in front of the user

Writing an RFC

18

P Process to propose changes to Rust

P Needs toinclude;
P Motivation

> Design of the new feature
P Drawbacks
P> Possible alternatives

P Unresolved questions

P> Nat every RFC is accepted by the relevant

team

P> An accepted RFC does not automatically

give you a stable feature

The #[diagnostic] attribute namespace #3368

o

@ Conversation 8 o Commits 10 [} Checks 0 [3 Fileschanged 1

welnich commented onjan 6, 2023 conen
Summary
Thi REC proposes to add o—
e It speciies asetof o0, how
these pler and whatis disallowed it
In adtion this R proposes a
unsatisied ais bounds,
Twould P rustfoundation e
Rendered
TICDICIICE,
o @, e spa Verified bobfead

Implementing the new language/compiler feature

1. Introduce a new nightly feature

2. Implement the new feature in the compiler
3. Write tests for the new feature
q

. Start using the feature in the ecosystem and possibly in the Rust standard library

19

Implementation strategies }(

20

!

P> The Rust compiler code base is just a large Rust code base

P> You don't need to understand everything, just that little part you are working on

P> Rustc has a good testing setup for diagnostics — Easy to add test cases first to inspect the result
P> Searching for error messages gives you an entry paint for where ta start looking

P println! based debug strategies work well to understand what's going on

Stabilization

21

vV vV VvV Vv V

Write a shart report how the feature is
currently used

Summarize the changes made during
implementation

Add documentation of the new feature to
the Rust Reference

Remove the unstable feature usage

Wait for the relevant team to take a
decision

Not every item proposed for stabilization
will be stahilized

Stabilize the #[diagnostic] namespace and
#[diagnostic::on_unimplemented] attribute #119888

PRSP bors merged 1 commitinto rust-lang:master from wekznich:atablize diagnostic_nasespace (5o Mar 8

@ Comversation 31 o Commits 1 [Checks 11 [Fleschanged 27
onjan - Contributor +++
This #letagnostic) the
auribute
The s(dtagnostic] p: home for attributes th
The compiler i any of
(non) iutes and options. This is

the need to keep then non-meaningful options working.

The W(dtagnostic: :on_unimplemented) attribute is allowed to appear on a trait definition. This allows crate authors to hint
the compiler to emit a specific error message if certain trait s not implemented. For the
satagnostic: son.L

« message which provides the textfor the top level error message

« be for message
« note which provides additional notes.

The note opti several times,

ges being emitted. If any of the other
h . Any other

r any other lint-warning is generated.

Allthree options accept a text as argument. This text
argumentor self (o) or syntax. For. [
warning is generated

This allows to have a trait definition like:

nted(©
for “InportantTrait<(a)>" 1s not inplenented for (selr) ",

trast Inportantrraitess ()

this error message:

I T N N =y

v

Summary v
g

22

The #[diagnostic] namespace is home for attributes providing hints to influence compiler error
messages

The #[diagnostic: :on_unimplemented] attribute allows to change the error message
emitted for unimplemented traits

The #[diagnostic: :do_not_recommend] attribute allows to hide trait implementations from
error messages

Overall helps to make compiler error messages in Rust even better

Adding new attributes does nat require a RFC, but just an implementation

