
DTrace for Rust*

*and everything else too

Adam Leventhal, Oxide
@ahl@mastodon.social
@ahl.bsky.social

OXIDE

Level: Intermediate

OXIDE

Some of this will be
“Introductory and overview”

OXIDE

I’m sorry

What is DTrace?

● Dynamic tracing facility
● Built to explore problems in production on mission

critical systems
● Systemic in scope: kernel, drivers, user-land, dynamic

languages, etc.
● Developed at Sun for Solaris; first available in 2003
● Ported to FreeBSD, macOS, Linux, Windows (and others)

The values of DTrace

● The focus on production use requires certain fundamental values
● Safety – a diagnostic system should do no harm
● Availability – you want tools at the ready when you hit problems
● Zero disabled probe-effect – when not in use, DTrace should have

no impact to system performance
● These should sound familiar to Rust users!

○ Memory safety; rigorous error handling
○ Production use
○ Zero-cost abstractions

Early DTrace

● DTrace started as a tool for us to answer questions about
the system

● Added dynamic instrumentation for kernel functions
● No special compilation or wide-spread code changes

required

Statically Defined Tracing (SDT)

● Dynamic probes let us see pathologies that had previously
been very expensive to observe

● Required a lot of familiarity with the implementation
● Fragile release-to-release
● Introduced Statically Defined Tracing to statically mark points

of semantic importance
● E.g. I/O, thread scheduling, process lifecycle, locking events

User-land tracing

● There’s a lot more user-land code than kernel code out
there so we also wanted to see into process activity

● Added the “pid” provider that can instrument user-land
functions

● Again, fully dynamic; no need for special compilation
● Works by replacing instructions with a trap
● The trap handler invokes DTrace’s machinery

User-land Statically Defined Tracing (USDT)

● As before, function tracing requires familiarity with the
implementation

● Added USDT to embed probes in user-land programs
● Those probes are part of the compiled binary
● Register with the kernel when the process starts
● Great for exposing higher level semantics (e.g.

postgres:::transaction-start)
● Turned out to let us inspect dynamic languages such as Java,

Ruby, JavaScript, Python, Perl, PHP

DTrace for Rust

● Rust generates binaries that look very much like binaries
from C or C++

● We can use the same DTrace facilities for dynamic
instrumentation to look at them!

OXIDE

Let’s trace!

Adding USDT probes to Rust code

● Use the usdt crate

$ cargo add usdt

● Written by me and my Oxide colleague, Ben Naecker
● At Oxide we use this everywhere!
● Where to add probes?

○ Where you log
○ Points of interest
○ Before and after actions whose latency you might want to measure
○ …

Define your provider

Note: you’ll generally want this at the crate root i.e. main.rs or lib.rs.

Invoke the probe in your code

Neat! But only starting to be useful…

OXIDE

ADVANCED CONTENT:
A macro just output another
macro and no one even
blinked

Adding arguments

Integral and string types are straightforward

Probes with arguments

Note: invoke with a closure that returns the values to be traced.

More arguments

● Wait, why do probes take closures rather than the actual
arguments?

● Good question! First, let’s look at arguments that aren’t
just strings and numbers

● We can pass in value of any type that implements
serde::Serialize

● Why Serialize? Hold that thought…

Probes with more complex arguments

Invoke the probe as before:

Consuming USDT probes in DTrace

● DTrace probes have arguments named arg0, arg1, arg2, …

dtrace -n 'my_provider*:::http_error{ trace(arg0); }'
dtrace: description 'my_provider*:::http_error' matched 0 probes
CPU ID FUNCTION:NAME
 1 521333 _ZN9test_usdt4main17h4f231f0987428b4bE:http_error 404

Strings are in userland so we need to copy them in

cat sql.d
my_provider*:::sql_query_started
{

trace(copyinstr(arg0));
}

dtrace -s sql.d
dtrace: script 'sql.d' matched 0 probes
CPU ID FUNCTION:NAME
 1 3106 _ZN9test_usdt4main17h4f231f0987428b4bE:sql_query_started
 SELECT * FROM data

Tracing complex types

● Recall that more complex types need to impl serde::Serialize
● The probe invocation serializes the value to JSON
● DTrace’s built-in json() function lets us navigate the serialized structure
● Serialization is fallible so there are top-level properties ok or err

cat complex.d
my_provider*:::my_probe
{

trace(json(copyinstr(arg0), "ok.val"));
}
dtrace -s complex.d
dtrace: script 'complex.d' matched 0 probes
CPU ID FUNCTION:NAME
 13 4693 _ZN9test_usdt4main17h4f231f0987428b4bE:my_probe 7

Ew… gross.

● Hard otherwise to convey complex structure into DTrace
● JSON is, broadly, the interchange we’ve settled on

(for good or ill)
● The probe macros (generated by the provider macro)

encapsulate quite a bit of complexity
● Tricky to make these probes have zero disabled

probe-effect (zero-cost abstractions)

OXIDE

ADVANCED CONTENT

Expanding a probe macro (simple)

DTrace replaces the nop with a trap when enabled

* Some non-code details elided

Expanding a probe macro (complex)

Expanding a probe macro (complex)

Is-enabled probes

● Back in time, back in C, we had a similar problem
● What if the arguments to probes were expensive to compute?
● We came up with a new kind of dynamic instrumentation
● Rather than trap into the kernel, change the flow of code

if my_probe_is_enabled() {
 // calculate expensive arguments
 fire_my_probe(expensive arguments)
}

In Rust

This time, DTrace replaces the clr with a instruction that sets the register to 1

Good news!

● Fortunately, we don’t have to worry about that!
● That’s the power of zero-cost abstractions
● Probe arguments are closures to remind us that they

might not be invoked!
● Rust lets us encapsulate that complexity…
● (at least, mostly …)
● … and add probes liberally

Go forth, and DTrace

● Running on a system with DTrace?
● Think about adding probes with the usdt crate
● Next time you want to inspect a system at runtime, think

about dynamic tracing rather than kill/println!/build/deploy

Thanks!

Adam Leventhal, Oxide
@ahl@mastodon.social
@ahl.bsky.social

