Dlrace tor Rust®

*and everything else too

Adam Leventhal, Oxide
@ahl@mastodon.social
@ahl.bsky.social

T

| I DA
| S .
T
-i L
| ool
y IIIIIIIII

3
Y II'IIII
ol

Oxide

Level: Intermediate

Some of this will be

“Introductory and overview”

What is DTrace?

e Dynamic tracing facility

e Built to explore problems in production on mission
critical systems

e Systemic in scope: kernel, drivers, user-land, dynamic
languages, etc.

e Developed at Sun for Solaris; first available in 2003

e Ported to FreeBSD, macOS, Linux, Windows (and others)

The values of DIrace

The focus on production use requires certain fundamental values
Safety — a diagnostic system should do no harm

Availability — you want tools at the ready when you hit problems
Zero disabled probe-effect — when not in use, DTrace should have
no impact to system performance

e [hese should sound familiar to Rust users!
o Memory safety; rigorous error handling
o Production use
o Zero-cost abstractions

Early DTrace

e Dilrace started as a tool for us to answer guestions about
the system

e Added dynamic instrumentation for kernel functions

e No special compilation or wide-spread code changes
required

Statically Defined Tracing (SDT)

e Dynamic probes let us see pathologies that had previously
been very expensive to observe

e Required a lot of familiarity with the implementation

e Fragile release-to-release

e Introduced Statically Defined Tracing to statically mark points
of semantic importance

e E.g.l/O, thread scheduling, process lifecycle, locking events

User-land tracing

There’s a lot more user-land code than kernel code out
there so we also wanted to see into process activity
Added the “pid” provider that can instrument user-land
functions

Again, fully dynamic; no need for special compilation
Works by replacing instructions with a trap

The trap handler invokes DTrace’s machinery

User-land Statically Defined Tracing (USDT)

e As before, function tracing requires familiarity with the

Implementation

Added USDT to embed probes in user-land programs

Those probes are part of the compiled binary

Register with the kernel when the process starts

Great for exposing higher level semantics (e.g.

postgres:::transaction-start)

e TJurned out to let us inspect dynamic languages such as Java,
Ruby, JavaScript, Python, Perl, PHP

DIrace for Rust

e Rust generates binaries that look very much like binaries

from C or C++
e \\Ve can use the same DTrace facilities for dynamic

instrumentation to look at them!

Let’s trace!

Adding USDT probes to Rust code

e Use the usdt crate
$ cargo add usdt

e Written by me and my Oxide colleague, Ben Naecker
e At Oxide we use this everywhere!

e Where to add probes?

Where you log

Points of interest

Before and after actions whose latency you might want to measure

o O O O

Define your provider

#Husdt :: provider]
mod my_provider {
fn something_happened() {}

Note: you’ll generally want this at the crate root i.e. main.rs or lib.rs.

Invoke the probe in your code

// The thing happened! Fire a probe!
my_provider:: something_happened!();

Neat! But only starting to be useful...

ADVANCED CONTENT:
A macro just output another

macro and no one even
blinked

Adding arguments

#Husdt :: provider]
mod my_provider {
fn http_error(_: u32) {}
fn sql_query_started(_: String) {}
fn value_updated(_: usize, _: usize) 1}

Integral and string types are straightforward

Probes with arguments

// 0h noes! We couldn't find the thing!
my_provider::http_error! (]| 404);

// Starting SQL query
let query: &str = "...";

my_provider::sql_query_started! (|| query);

my_provider::value_updated! (]| (old, new));

Note: invoke with a closure that returns the values to be traced.

More arguments

e \Vait, why do probes take closures rather than the actual
arguments?

e (Good question! First, let’s look at arguments that aren’t
just strings and numbers

e \\Ve can pass in value of any type that implements
serde: :Serialize

e Why Serialize? Hold that thought...

Probes with more complex arguments

#Hderive(serde::Serialize, Clone)]
2 implementations

> pub struct Arg {-

#Husdt :: provider]
mod my_provider {

fn my_probe(_: &Arg) {}
}

Invoke the probe as before:

let arg: Arg = XXX;
my_provider ::my_probe! (|| arg);

Consuming USDT probes in DTrace

e Dilrace probes have arguments named arg0, argl, arg2, ...

dtrace -n 'my provider*:::http error{ trace(arg0); }'
dtrace: description 'my provider*:::http error' matched 0 probes
CPU ID FUNCTION : NAME

1 521333 ZN9test usdtdmainl7h4f231£f0987428b4bE:http error 404

Strings are in userland so we need to copy them in

cat sgl.d
my provider*:::sgl query started

{

trace (copyinstr (arg0)) ;

dtrace -s sqgl.d
dtrace: script 'sgl.d' matched 0 probes
CPU ID FUNCTION : NAME

1 3106 ZN9test usdtd4mainl’7h4£f231£f0987428b4bE:sgl query started
SELECT * FROM data

Tracing complex types

Recall that more complex types need to impl serde::Serialize

The probe invocation serializes the value to JSON

DTrace’s built-in 3son () function lets us navigate the serialized structure
Serialization is fallible so there are top-level properties ok or err

cat complex.d
my provider*:::my probe
{
trace (json (copyinstr (arg0), "ok.val"));
}
dtrace -s complex.d
dtrace: script 'complex.d' matched 0 probes
CPU ID FUNCTION : NAME
13 4693 7ZN9test usdtd4mainl’7h4f231f0987428b4bE:my probe 7

Ew... gross.

e Hard otherwise to convey complex structure into DIrace
e JSON is, broadly, the interchange we’ve settled on

(for good or ill)
e The probe macros (generated by the provider macro)

encapsulate quite a bit of complexity
e [ricky to make these probes have zero disabled

probe-effect (zero-cost abstractions)

ADVANCED CONTENT

Expanding a probe macro (simple)

let args: (i32,) = (__usdt_private_args_lambda(),);
let arg_0: i32 = args.0;
unsafe {
asm! (
"nop",
in("x0")(arg_0 as ié4),
options(nomem, nostack, preserves_flags)
g
}.

DTrace replaces the nop with a trap when enabled

* Some non-code details elided

Expanding a probe macro (complex)

let args: (&Arg,) = (__usdt_private_args_lambda(),);
let arg_0: String = match serde_json::to_string(&args.0) {
Ok(json: String) = format!(r#"{{"ok":{}}}"#, json),
Err(err: Error) = format!(r#"{{"err":{}}}"#, err),
b:
unsafe {
asm! (
“nop",
in("x0") (arg_0.as_ptr() as ié4),
options(nomem, nostack, preserves_flags)

);

Expanding a probe macro (complex)

let args: (&Arg,) = (__usdt_ppivete—args—tambde--L;
let arg_0: String = match(serde_json::to_string(&args.0) {
Ok(json: String) = formati{r#ttfteldt{}}"4;—Jjson),
Err(err: Error) = format!(r#"{{"err":{}}}"#, err),
b:
unsafe {
asm! (
“nop",
in("x0") (arg_0.as_ptr() as ié4),
options(nomem, nostack, preserves_flags)

);

Is-enabled probes

Back in time, back in C, we had a similar problem

What if the arguments to probes were expensive to compute?
We came up with a new kind of dynamic instrumentation
Rather than trap into the kernel, change the flow of code

if my_probe_is_enabled() {
// calculate expensive arguments
fire_my_probe(expensive arguments)

}

In Rust

let mut is_enabled: ué4;
unsafe {
asm! (
‘elr r@",
out("x0") is_enabled,
options(nomem, nostack, preserves_flags)

);

if is_enabled = 0 {
// Probe as before

This time, DTrace replaces the c1r with a instruction that sets the register to 1

Good news!

e [ortunately, we don’t have to worry about that!

e [hat’s the power of zero-cost abstractions

e Probe arguments are closures to remind us that they
might not be invoked!

e Rust lets us encapsulate that complexity...

e (at least, mostly ...)

e ... and add probes liberally

dtrace probes #6816
Ociosed

@ graydon opened on May 29, 2013

| think rust should expose dtrace userland probes

Links:

http://www.solarisinternals.com/wiki/index.php/DTrace_Topics_USDT
https://wikis.oracle.com/display/DTrace/Statically+Defined+Tracing+for+User+Applications
https://wiki.freebsd.org/DTrace/userland

Some specific providers (including some dynamic):
https://github.com/chrisa/libusdt
https://github.com/chrisa/node-dtrace-provider
http://prefetch.net/projects/apache_modtrace/index.html
https://bugzilla.mozilla.org/show_bug.cgi?id=370906

Go forth, and DTrace

e Running on a system with DTrace?

e Think about adding probes with the usdt crate

e Next time you want to inspect a system at runtime, think
about dynamic tracing rather than Kill/printin!/build/deploy

OXIDE AND FRIENDS - EPISODE 26

DTrace at 20

ORE INFO

SEPTEMBER 12, 2023
by Oxide Computer Company
Visit Website

LISTE

S E
RSS Feed

USDT for Rust

OxCon 2023
Benjamin Naecker
Adam Leventhal

ox

SEASON 3

00:00

_—
>
=
e]
S D
R O R
n Y e hemey

YouTube

P99 CONF 2024 | DTrace at 21: Reflections on Fully-grown

Software by Bryan Cantrill

conf(24)

T h a ﬂ kS ' v e 2 et A[||||||||| i

T
| T
1 oanannny erun
L onennene, o

| g
T
‘ mumlL i

@ahl@mastodon.social L

Adam Leventhal, Oxide ﬂ[g
@ahl.bsky.social)

T 11 E ““““I ““lll
QLT T
S

T |

T | "“I“" “lll"

QLT = ‘_‘ 11
USDT for Rust e E I“"“" ““I“
T

’ E LR T

(B LLLETTTISETTTTTT

