
1

RHINO:
LOW-LATENCY
KEY-VALUE
DATABASE IN RUST

NIKITA LAPKOV
Senior Software Engineer

2

HELLO!

Worked on MongoDB, ClickHouse, YDB

System Programming, Query Engines

laplab.me
hi@laplab.me

3

DATA ACCESS LATENCY

Ann

Mark

Global
Database

Bob

4

RHINO AS A SOLUTION

Ann

Ann’s
database

Mark

Mark’s
database Bob’s

database

Bob

5

DATA MODEL

User A User A

us-west-1

User B

us-central-1

User D

User C

us-east-1

User E User E

6

DATA MODEL

User A User A

us-west-1

User B

us-central-1

User D

User C

us-east-1

User E User E

Different tables
belonging to the

same user

7

DATA MODEL

User A User A

us-west-1

User B

us-central-1

User D

User C

us-east-1

User E User E

Same global
schema between

regions

8

DATA MODEL

User A User A

us-west-1

User B

us-central-1

User D

User C

us-east-1

User E User E

Request to
access green

table for User D

9

DATA MODEL

User A User A

us-west-1

User B

us-central-1

User D

User C

us-east-1

User E User E

Request to
access green

table for User D

User D

10

DATA MODEL

User A User A

us-west-1

User B

us-central-1

User D

User C

us-east-1

User E User E

Request to
access violet

table for User C

User D

11

DATA MODEL

User A User A

us-west-1

User B

us-central-1

User D

User C

us-east-1

User E User E

Request to
access violet

table for User C

User D

12

ARCHITECTURE REQUIREMENTS

Global routing to find where tables are stored

Global schema management

Almost all operations must be local to the region

13

RHINO ARCHITECTURE

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

14

RHINO ARCHITECTURE

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

FoundationDB

FoundationDB

FoundationDB

15

FOUNDATIONDB

Transactional key-value database

Focus on correctness

Building block for distributed systems

16

RHINO ARCHITECTURE

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

FoundationDB

FoundationDB

Region Server

Region Server

17

DynamoDB-style key-value tables

fn get(primary key) -> value
fn set(primary key, value)

Primary key is a tuple of values
Last component of primary key can be a column name

set(("Nikita", "Lapkov", "city"), "London")

TABLES ON TOP OF FOUNDATIONDB

18

TABLES ON TOP OF FOUNDATIONDB

/tenants/TENANT_ID/table/USER_ID/MyTableName

Key Value

\x01Nikita\x01Lapkov\x01city\xff "London"

\x01Nikita\x01Lapkov\x01dog_preference\xff "big floof"

…

19

RHINO ARCHITECTURE

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

Control Server

Region Server

API Server

Region Server

User

20

WEBSOCKET MULTIPLEXER

API Server establishes one connection per region

Requests are multiplexed on this single connection

21

WEBSOCKET MULTIPLEXER

WebSocket
Multiplexer

WebSocket

Async Task 1

Async Task 2

Async Task N

…

Channels

API Server

22

WEBSOCKET MULTIPLEXER

let mut handler = create_stream().await?;

handler.send(
 GetTenantIdByToken { token }
 .correlate(new_correlation_id()),
)?;

let response = handler.recv().await

23

RHINO ARCHITECTURE

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

Control Server

24

METADATA MANAGEMENT

Using tables on top of FoundationDB we store:

 Valid auth tokens in the system
 auth/table/Tokens

 Which tables are available in each region
 routing/table/Shards

 Table's schema
 schema/table/TableSchemas

25

RHINO ARCHITECTURE

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

Replicator

Region Server

Region Server

26

METADATA REPLICATION

New replication task is added on each metadata change

Replication tasks are managed through queues

Queues are implemented using QuiCK [1]

All replication is idempotent

[1] QuiCK: A Queuing System in CloudKit, Apple Inc

27

QUEUES USING QuiCK

fn enqueue(tuple of values)

fn dequeue(lease duration)
 -> (lease id, tuple of values)

fn complete(lease id)

[1] QuiCK: A Queuing System in CloudKit, Apple Inc

28

QUEUES USING QuiCK

/some/queue/path

Key Value

29

QUEUES USING QuiCK

/some/queue/path

Key Value

(timestamp, random ULID) "my queue item"

enqueue("my queue item")

30

QUEUES USING QuiCK

/some/queue/path

Key Value

(timestamp + lease duration, random ULID) "my queue item"

dequeue(lease duration)

31

QUEUES USING QuiCK

/some/queue/path

Key Value

(timestamp + lease duration, random ULID) "my queue item"

dequeue(lease duration)

-> lease id = (timestamp + lease duration, random ULID)

32

QUEUES USING QuiCK

/some/queue/path

Key Value

(timestamp + lease duration, random ULID) "my queue item"

complete(lease id)

33

FINAL OVERVIEW

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

34

FINAL OVERVIEW

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

Data Reads and Writes

Data Reads and Writes

35

FINAL OVERVIEW

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

Schema changes

Schema changes

36

FINAL OVERVIEW

FoundationDB

FoundationDB

Control Server

Replicator

Region Server

API Server

FoundationDBRegion Server

User

Control Region

us-west-1

eu-east-3

S
chem

a changes

S
chem

a changes

37

Automatic global routing

Global schema management

Low-latency data access

CONCLUSION

38

THANK YOU!
hi@laplab.me

github.com/laplab/rhino

