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HELLO!

Worked on MongoDB, ClickHouse, YDB

System Programming, Query Engines

laplab.me
hi@laplab.me
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RHINO AS A SOLUTION
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ARCHITECTURE REQUIREMENTS

Global routing to find where tables are stored

Global schema management

Almost all operations must be local to the region
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RHINO ARCHITECTURE
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FOUNDATIONDB

Transactional key-value database

Focus on correctness

Building block for distributed systems
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DynamoDB-style key-value tables

fn get(primary key) -> value
fn set(primary key, value)

Primary key is a tuple of values
Last component of primary key can be a column name

set(("Nikita", "Lapkov", "city"), "London")

TABLES ON TOP OF FOUNDATIONDB
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TABLES ON TOP OF FOUNDATIONDB

/tenants/TENANT_ID/table/USER_ID/MyTableName

Key Value

\x01Nikita\x01Lapkov\x01city\xff "London"

\x01Nikita\x01Lapkov\x01dog_preference\xff "big floof"

…



19

RHINO ARCHITECTURE
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WEBSOCKET MULTIPLEXER

API Server establishes one connection per region

Requests are multiplexed on this single connection
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WEBSOCKET MULTIPLEXER
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WEBSOCKET MULTIPLEXER

let mut handler = create_stream().await?;

handler.send(
    GetTenantIdByToken { token }
        .correlate(new_correlation_id()),
)?;

let response = handler.recv().await
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METADATA MANAGEMENT

Using tables on top of FoundationDB we store:
  
    Valid auth tokens in the system
        auth/table/Tokens

    Which tables are available in each region
        routing/table/Shards

    Table's schema
        schema/table/TableSchemas
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METADATA REPLICATION

New replication task is added on each metadata change

Replication tasks are managed through queues

Queues are implemented using QuiCK [1]

All replication is idempotent

[1] QuiCK: A Queuing System in CloudKit, Apple Inc
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QUEUES USING QuiCK

fn enqueue(tuple of values)

fn dequeue(lease duration)
    -> (lease id, tuple of values)

fn complete(lease id)

[1] QuiCK: A Queuing System in CloudKit, Apple Inc
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QUEUES USING QuiCK

/some/queue/path

Key Value
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QUEUES USING QuiCK

/some/queue/path

Key Value

(timestamp, random ULID) "my queue item"

enqueue("my queue item")
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QUEUES USING QuiCK

/some/queue/path

Key Value

(timestamp + lease duration, random ULID) "my queue item"

dequeue(lease duration)



31

QUEUES USING QuiCK

/some/queue/path

Key Value

(timestamp + lease duration, random ULID) "my queue item"

dequeue(lease duration)

-> lease id = (timestamp + lease duration, random ULID)
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QUEUES USING QuiCK

/some/queue/path

Key Value

(timestamp + lease duration, random ULID) "my queue item"

complete(lease id)
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FINAL OVERVIEW
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Automatic global routing

Global schema management

Low-latency data access

CONCLUSION
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THANK YOU!
hi@laplab.me

github.com/laplab/rhino


