
1

ANDREA RIGHI
Principal System Software Engineer @ NVIDIA

Crafting a Linux
kernel scheduler
in Rust

2

Scheduling

3

What is a
scheduler?

● Kernel component that determines:
– Where each task needs to run
– When each task needs to run
– How long each task needs to run

4

Why does
scheduling
matter?

● Performance
– Workload
– Topology

● Security
– Isolation

● Energy Efficiency
– EAS

5

CPU topology can be complex...

[From `lstopo` on a Dell Precision 5480 equipped with 13th Gen Intel(R) Core(TM) i7-13800H CPUs]

6

Scheduling in
Linux

● One scheduler to “rule them all”
– CFS < v6.6
– EEVDF >= v6.6

● Really difficult to conduct experiments

● Really difficult to upstream changes

7

sched_ext
● Implement custom CPU schedulers

as loadable BPF programs

● BPF guarantees safety (no kernel
panic, memory bugs, ...)

● Watchdog prevents deadlock and
starvation

● Available in Linux v6.12

8

BPF scheduler

BPFKernel

sched_ext

BPF scheduler

sched_ext callbacks
(enqueue, dispatch, ...)

9

sched_ext
pros / cons

● Pros

– Ease of experimentation
– Fast edit/compile/test iteration
– Safety

● Cons
– Limited programming model
– BPF verifier complexity
– Kernel restrictions (no user-space

libs, no floating point, etc.)

10

User-space scheduling

11

Idea
● Use BPF + sched_ext to channel

scheduling events to user space

● A scheduler becomes a regular
user-space process

● Offload complexity to user space

● Access to user-space languages

– Use Rust!

12

User-space scheduler: design

BPF User spaceKernel

libbpf

sched_ext
libbpf-rs

User-space scheduler

BPF scheduler

13

scx_rustland
● EDF-based scheduler

– Deadline is evaluated as a
function of the task’s vruntime and
the average amount of voluntary
context switches

● Tasks use a variable time slice
– Time slice inversely proportional

to the amount of tasks waiting to
be scheduled

14

Is it working?

15

Demo: playing Terraria while building the kernel

EEVDF scx_rustland

16

EEVDF vs scx_rustland - https://perfetto.dev

EEVDF

scx_rustland

17

Why is it
better?

● Interactive workloads are typically
cyclic (pipeline)

● Tasks release the CPU voluntarily

Wait next
frame

Start frame
[timer]

Proces scene

Send scene
to compositor

Game
engine

18

Generalize user-space
scheduling

19

scx_rustland_core
framework

● Abstract scx_rustland backend

● Define generic scheduling API

● Provide a Rust crate
(scx_rustland_core)

● Allow to implement Linux schedulers
easily as regular Rust projects

20

FIFO scheduler (using the scx_rustland_core crate)
fn schedule(&mut self) {

 let nr_waiting = *self.bpf.nr_queued_mut();

 while let Ok(Some(task)) = self.bpf.dequeue_task() {

 let mut dispatched_task = DispatchedTask::new(&task);

 let cpu = self.bpf.select_cpu(task.pid, task.cpu, 0);

 dispatched_task.cpu = if cpu >= 0 { cpu } else { RL_CPU_ANY };

 dispatched_task.slice_ns = SLICE_NS / (nr_waiting + 1);

 self.bpf.dispatch_task(&dispatched_task).unwrap();

 }

 self.bpf.notify_complete(0);

}

21

AI-generated schedulers?

22

scx_rustland_core: design

BPF User spaceKernel

scx_rustland_core
(backend)

libbpf
BPF_MAP_TYPE_RINGBUF

sched_ext
(core)

BPF_MAP_TYPE_USER_RINGBUF

libbpf-rs
sched_ext callbacks

(enqueue, dispatch, ...)

scx_rustland_core
(frontend)

User-space scheduler

23

Caveats
● User-space scheduler can’t be

blocked

– Page faults are bad

– Override the Rust allocator via
GlobalAlloc

– Work on a pre-allocated
mlock()ed memory arena

24

Conclusion

25

Key takeaways
● scx_rustland is not a better scheduler

in general

● Rust itself doesn’t make the
scheduling better

● Ease of experimentation is the key

– Fast edit/compile/test cycle

– Integration with user-space
components (Rust crates)

26

Future idea
● What if we provide a similar

technology for other kernel
subsystems?

– Drivers

– Filesystems

– …

● Implement more kernel subsystems in
Rust (without adding Rust into the
kernel)

27

References
● Main scx project

– https://github.com/sched_ext/scx

● Rust scheduler template
– https://github.com/arighi/scx_rust_

scheduler

● LWN.net – sched_ext at LPC
– https://lwn.net/Articles/991205

https://github.com/sched_ext/scx
https://github.com/arighi/scx_rust_scheduler
https://github.com/arighi/scx_rust_scheduler
https://lwn.net/Articles/991205

28

Questions?

29

ANDREA RIGHI
arighi@nvidia.com

	SPEAKER NAME
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Subsection Title (7)
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Greetings and conclusion (3)
	SPEAKER NAME (4)

