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Scheduling
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What is a 
scheduler?

● Kernel component that determines:
– Where each task needs to run
– When each task needs to run
– How long each task needs to run
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Why does 
scheduling 
matter?

● Performance
– Workload
– Topology

● Security
– Isolation

● Energy Efficiency
– EAS
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CPU topology can be complex...

[From `lstopo` on a Dell Precision 5480 equipped with 13th Gen Intel(R) Core(TM) i7-13800H CPUs]
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Scheduling in 
Linux

● One scheduler to “rule them all”
– CFS < v6.6
– EEVDF >= v6.6

● Really difficult to conduct experiments

● Really difficult to upstream changes
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sched_ext
● Implement custom CPU schedulers 

as loadable BPF programs

● BPF guarantees safety (no kernel 
panic, memory bugs, ...)

● Watchdog prevents deadlock and 
starvation

● Available in Linux v6.12
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BPF scheduler

BPFKernel

sched_ext

BPF scheduler

sched_ext callbacks
(enqueue, dispatch, ...)
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sched_ext
pros / cons

● Pros

– Ease of experimentation
– Fast edit/compile/test iteration
– Safety

● Cons
– Limited programming model
– BPF verifier complexity
– Kernel restrictions (no user-space 

libs, no floating point, etc.)
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User-space scheduling
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Idea
● Use BPF + sched_ext to channel 

scheduling events to user space

● A scheduler becomes a regular
user-space process

● Offload complexity to user space

● Access to user-space languages

– Use Rust!
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User-space scheduler: design

BPF User spaceKernel

libbpf

sched_ext
libbpf-rs

User-space scheduler

BPF scheduler
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scx_rustland
● EDF-based scheduler

– Deadline is evaluated as a 
function of the task’s vruntime and 
the average amount of voluntary 
context switches

● Tasks use a variable time slice
– Time slice inversely proportional 

to the amount of tasks waiting to 
be scheduled
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Is it working?
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Demo: playing Terraria while building the kernel

EEVDF scx_rustland
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EEVDF vs scx_rustland - https://perfetto.dev

EEVDF

scx_rustland
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Why is it 
better?

● Interactive workloads are typically 
cyclic (pipeline)

● Tasks release the CPU voluntarily

Wait next 
frame

Start frame 
[timer]

Proces scene

Send scene 
to compositor

Game 
engine
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Generalize user-space 
scheduling
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scx_rustland_core 
framework

● Abstract scx_rustland backend

● Define generic scheduling API

● Provide a Rust crate 
(scx_rustland_core)

● Allow to implement Linux schedulers 
easily as regular Rust projects
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FIFO scheduler (using the scx_rustland_core crate)
fn schedule(&mut self) {

    let nr_waiting = *self.bpf.nr_queued_mut();

    while let Ok(Some(task)) = self.bpf.dequeue_task() {

        let mut dispatched_task = DispatchedTask::new(&task);

        let cpu = self.bpf.select_cpu(task.pid, task.cpu, 0);

        dispatched_task.cpu = if cpu >= 0 { cpu } else { RL_CPU_ANY };

        dispatched_task.slice_ns = SLICE_NS / (nr_waiting + 1);

        self.bpf.dispatch_task(&dispatched_task).unwrap();

    }

    self.bpf.notify_complete(0);

}
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AI-generated schedulers?
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scx_rustland_core: design

BPF User spaceKernel

scx_rustland_core 
(backend)

libbpf
BPF_MAP_TYPE_RINGBUF

sched_ext
(core)

BPF_MAP_TYPE_USER_RINGBUF

libbpf-rs
sched_ext callbacks

(enqueue, dispatch, ...)

scx_rustland_core
(frontend)

User-space scheduler
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Caveats
● User-space scheduler can’t be 

blocked

– Page faults are bad

– Override the Rust allocator via 
GlobalAlloc

– Work on a pre-allocated 
mlock()ed memory arena
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Conclusion
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Key takeaways
● scx_rustland is not a better scheduler 

in general

● Rust itself doesn’t make the 
scheduling better

● Ease of experimentation is the key

– Fast edit/compile/test cycle

– Integration with user-space 
components (Rust crates)



26

Future idea
● What if we provide a similar 

technology for other kernel 
subsystems?

– Drivers

– Filesystems

– …

● Implement more kernel subsystems in 
Rust (without adding Rust into the 
kernel)
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References
● Main scx project

– https://github.com/sched_ext/scx

● Rust scheduler template
– https://github.com/arighi/scx_rust_

scheduler

● LWN.net – sched_ext at LPC
– https://lwn.net/Articles/991205

https://github.com/sched_ext/scx
https://github.com/arighi/scx_rust_scheduler
https://github.com/arighi/scx_rust_scheduler
https://lwn.net/Articles/991205
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Questions?
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ANDREA RIGHI
arighi@nvidia.com
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